Graphpad,经典绘图工具初学初探

大多数科研文章都离不开图表,尤其是图,熟悉一些绘图软件,并将图在文章和PPT中展示出来,是科研训练的重要内容。漂亮的文章配图能给自己的工作加不少分,生信宝典推出R的系列教程ggplot2高效实用指南 (可视化脚本、工具、套路、配色)讲解通过R语言绘制高颜值图。后来为了更加方便使用,生信宝典团队开发了在线绘图工具www.ehbio.com/ImageGP,支持14中常见图形和部分扩增子分析,深受欢迎,日均访问400次,累计访问数十万次,遍及世界各大洲,功能也在一直增加完善中。

后台不少朋友说有更多绘图的需求,故整理了Graphpad的使用,一是传播知识,二是向优秀软件学习,让在线绘图越来越好。 Graphpad , Origin和SigmaPlot是科研领常用的三款统计作图软件,他们各有优缺点,经常需要配合使用。

今天给大家介绍的是Graphpad的基本使用方法

了解Graphpad的图表类型

下面是Graphpad的欢迎界面

方框1处可知Graphpad Prism 6为用户提供了6种基本统计图表选择;方框2处是对所选类型图表的解释说明,点击Learn more查看官方帮助文档;方框3处可以选择某一类型图表下的小分类;方框4处则提供了演示数据集,方便新手入门。

img

6种统计图表类型的说明和使用的统计方法介绍如下:

  1. XY:

    介绍: 即用XY坐标系确定一个点的位置。当数据有多个重复时,可以计算平均值和标准差等,绘图时可以插上误差线。

    统计方法: 线性回归、非线性回归、相关分析。

  2. column:柱状图

    介绍: 分组指标只有一个,比如治疗组与对照组。

    统计方法: 单样本t检验、配对t检验、成组t检验、单样本秩和检验、两组独立样本秩和检验、多组独立样本秩和检验、单因素方差分析。

  3. grouped:二维分组柱状图

    介绍: 分组指标有多个,比如统计治疗组与对照组在男性和女性患者的不同情况。

    统计方法: 两因素方差分析、重复测量的两样本方差分析。

  4. contingency:列联表

    介绍: 看起来和grouped组合图很像,区别在于没有误差线,那是因为没有重复测量值,一个柱子就是一个值。

    统计方法: 卡方检验、Fisher精确检验。

  5. survival:生存曲线图

    统计方法: 单因素生存曲线比较。

  6. parts of whole:部分占总体的比例,常用饼图表示。

分组柱状图作图演示

在此选择grouped下提供的第二个现成数据集进行作图演示。选好后直接点击creat即可。

img

操作主界面

上一步之后我们便进入了graphpad操作的主界面,

img

方框1处展示的是我们的数据,每个大组表示三种不同的细胞系(wild-type cells、GPP5 cell line和GPP7 cell line);每行表示不同的处理(血清饥饿和正常培养);每组5个平行重复。

该实验数据存在缺失值,如第一行的A:Y4。

方框2处是一个目录树

  1. Data Tables:点击后展示分析的数据集;
  2. Info:点击此处显示数据的基本信息,并可以新增一些备注描述;
  3. Results:生物统计分析结果展示(接下来会讲到);
  4. Graphs:当录入数据之后,点击该图标可初步生成一个统计图,之后根据统计分析结果稍加修改即可;
  5. Layouts:对多个图表进行排版。

选择作图类型

导入数据后,点击Graphs即可出图,如下:

img

在这个界面中,可以根据自己的需求改变图的类型。初学者要敢于乱点,自己试试不同的选项,就能知道每部分是什么功能了。(尝试出真知

  1. Graph family:改变图表类型,就是最开始提到的6种;
  2. plot individual values和plot summary data:顾名思义,前者把每组实验5个平行的值都展示到了图中,后者展示的是平均值。选择合适的分组作图方式;
  3. Interleaved bars:误差棒,点击Plot下拉框,按照不同的统计分析给图加上误差棒,一般选择Mean with SD

统计分析

上面初步作出的统计图并没有展示诸如组间差异的统计分析结果,那我们要怎么添加*以展示组间差异呢?

在欢迎界面有enter and plot error values already calculated elsewhere选项,说明可以从外部导入在别处做好的统计分析结果,那是要去其他地方做好计算再来作图吗?

不需要!因为Graphpad上便可直接做统计分析!!!虽然可以在别的地方先做好分析,但是并不建议这样做,直接一个操作更便捷。

首先确定我们的分析目标:

1)评估细胞系之间的差异是否超过预期;
2)评估处理之间的差异是否超过预期的偶然性;
3)评估处理之间的差异是否与每种细胞系一致;
4)计算不同处理的细胞系之间差异的95%置信区间。

因此我们需要进行两因素的方差分析,点击Analyze,从Grouped分析列表中选择Two-way ANOVA,并接受对话框中的所有默认选项。Graphpad人性化之处在于,会自动识别当前分析的数据结构,给用户展示出最优的默认分析选项。
img

之后的具体分析便需要一定的统计学知识了,初生牛犊别怕试,你会发现点击不同的选项时,图示也会跟着变化,十分方便用户理解。

1)第一部分:实验设计,最开始提到了该组数据是非配对的,选第一;
2)第二部分:多重比较选择,就是你想要横着比还是竖着比或是斜着比;
3)第三部分:选择做统计分析的一些参数。

img

上面都设置好后,点击OK,分析结果会展示到操作主界面,并且保存到左侧目录树下的Results文件夹中。

img

img

完善改进统计图

1. 图形编辑工具栏介绍

img

1)第一部分:文档操作模块,跟office类似,如打开、新建、保存、复制粘贴等;
2)第二部分:数据分析,即之前演示的对录入数据进行统计分析;
3)第三部分:图形编辑,这部分是该软件的精华所在。可对图形进行例如图形类型、坐标轴、误差棒、图形大小、颜色等编辑更改;
4)第四部分:文字编辑,可以在统计图上插图线条、添加文字等;
5)第五部分:图形输出,可将做好的图导出、打印或输出到word/PPT中。

2. 根据之前的统计分析结果,利用文字编辑工具给统计图添上组间差异的标志

1)draw:可以插入不同形状的线;
2)write:编辑文字,插入公式等;
3)双击图形中的任一元素,可对文字、线条等进行形状、大小、粗细等编辑

img

3. 坐标轴调整

点击Change中的第二个图标,或者在图中双击坐标轴,调出坐标调整工具;

坐标轴整体设置和X轴设置,见图解,一般不做太多改动;

img

重点讲解如何设置Y轴,做出截断图,这是统计作图中常见的问题。

之前的数据相差不大,不太适合做演示,故另外生成了一个柱状图。左边柱子值太大,右边柱子值太小,右侧的柱子几乎消失了,使图看起来很不协调。做一个截断图可以很好地解决该问题。

img

1)点击坐标设置中的Left Y axis(一般作图默认只生成左边的Y轴);
2)Gaps and Direction处选择Two segments,即将Y轴断裂成两部分(根据实际数据,还可以选择将Y轴断裂成3段);
3)在Segment处,对下段(Bottom)和上段(Top)的Y轴分别设置参数(Rang);
4)然后在Regularly spaced ticks下的Major ticks interval处设置Y轴数值标签;

length:50%,上下段的长度各一半;
minimum:下段最小值0,上段最小值150;
maximum:下段最大值10,上段最大值200;
Major ticks:下段每格大小为2,上段每格大小为10。

这样便将Y轴10-150中间部分截掉了,整个图便显得好看多了。

4. 颜色修改

点击Change中的最后一个图标,或者在图中双击柱子,调出调整参数的工具框;

img

利用graphpad做统计图的基本操作大概就是以上这些内容,掌握一个工具的使用方法并不难,多试试便会了。难的是背后的统计学知识,如何对自己的数据选择合适的统计分析方法?当掌握不同分析方法适用于哪些数据结构后,便可以举一反三,对不同实验设计的数据做合适的分析了。

R统计和作图

### 使用 GraphPad Prism 进行 Mann-Whitney U 检验后的 F 值获取与解释 #### 背景说明 Mann-Whitney U 检验是一种用于评估两个独立样本之间是否存在显著差异的非参数检验方法[^1]。然而,在标准的 Mann-Whitney U 检验中,并不涉及 F 统计量的计算,因为该测试主要依赖于秩和而非方差分析中的变异比例。 #### 如何处理请求的数据分析需求 当提到希望得到 F 值时,这通常指的是 ANOVA (Analysis of Variance, 方差分析) 或其他基于方差比率的方法的结果指标之一。对于 GraphPad Prism 用户来说: - 如果确实需要执行类似于ANOVA的过程并报告F值,则应该考虑使用 One-way ANOVA 功能而不是 Mann-Whitney 测试。 - 对于已经完成的 Mann-Whitney U 检验,软件不会提供 F 值作为输出的一部分,而是会给出 U 值以及相应的 p-value 来帮助判断两组间是否存在统计意义上的区别[^2]。 #### 替代方案 为了满足特定的研究目的,可以采取如下措施: - **转换为适合 F 比率的模型**:如果研究设计允许的话,可以选择 one-way ANOVA 或 Kruskal-Wallis H test(针对非正态分布数据),这两种方法都可以产生类似的结论并且能够提供 F 值或者其等价形式[^3]。 - **利用额外工具辅助解析**:虽然 GraphPad 不直接支持从 Mann-Whitney 输出转导至 F 值,但是可以通过外部资源如 Excel 表格或其他统计包间接实现这一目标。不过需要注意的是这样做可能并不符合严格的统计理论基础。 ```python import scipy.stats as stats # 示例代码展示如何手动计算F值对比不同条件下的均值变化情况 group_a = [data_points_for_group_A] group_b = [data_points_for_group_B] f_statistic, p_value = stats.f_oneway(group_a, group_b) print(f"F statistic: {f_statistic}") print(f"P value: {p_value}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信宝典

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值