MIT | 数据分析、信号处理和机器学习中的矩阵方法 笔记系列 Lecture 4 Eigenvalues and Eigenvectors

本系列为MIT Gilbert Strang教授的"数据分析、信号处理和机器学习中的矩阵方法"的学习笔记。

  • Gilbert Strang & Sarah Hansen | Spring 2018
  • 18.065: Matrix Methods in Data Analysis, Signal Processing, and Machine Learning
  • 视频网址: https://ocw.mit.edu/courses/18-065-matrix-methods-in-data-analysis-signal-processing-and-machine-learning-spring-2018/
  • 关注下面的公众号,回复“ 矩阵方法 ”,即可获取 本系列完整的pdf笔记文件~

内容在CSDN、知乎和微信公众号同步更新

在这里插入图片描述

  • Markdown源文件暂未开源,如有需要可联系邮箱
  • 笔记难免存在问题,欢迎联系邮箱指正

Lecture 0: Course Introduction

Lecture 1 The Column Space of A A A Contains All Vectors A x Ax Ax

Lecture 2 Multiplying and Factoring Matrices

Lecture 3 Orthonormal Columns in Q Q Q Give Q ′ Q = I Q'Q=I QQ=I

Lecture 4 Eigenvalues and Eigenvectors

Lecture 5 Positive Definite and Semidefinite Matrices

Lecture 6 Singular Value Decomposition (SVD)

Lecture 7 Eckart-Young: The Closest Rank k k k Matrix to A A A

Lecture 8 Norms of Vectors and Matrices

Lecture 9 Four Ways to Solve Least Squares Problems

Lecture 10 Survey of Difficulties with A x = b Ax=b Ax=b

Lecture 11 Minimizing ||x|| Subject to A x = b Ax=b Ax=b

Lecture 12 Computing Eigenvalues and Singular Values

Lecture 13 Randomized Matrix Multiplication

Lecture 14 Low Rank Changes in A A A and Its Inverse

Lecture 15 Matrices A ( t ) A(t) A(t) Depending on t t t, Derivative = d A / d t dA/dt dA/dt

Lecture 16 Derivatives of Inverse and Singular Values

Lecture 17 Rapidly Decreasing Singular Values

Lecture 18 Counting Parameters in SVD, LU, QR, Saddle Points

Lecture 19 Saddle Points Continued, Maxmin Principle

Lecture 20 Definitions and Inequalities

Lecture 21 Minimizing a Function Step by Step

Lecture 22 Gradient Descent: Downhill to a Minimum

Lecture 23 Accelerating Gradient Descent (Use Momentum)

Lecture 24 Linear Programming and Two-Person Games

Lecture 25 Stochastic Gradient Descent

Lecture 26 Structure of Neural Nets for Deep Learning

Lecture 27 Backpropagation: Find Partial Derivatives

Lecture 28 Computing in Class [No video available]

Lecture 29 Computing in Class (cont.) [No video available]

Lecture 30 Completing a Rank-One Matrix, Circulants!

Lecture 31 Eigenvectors of Circulant Matrices: Fourier Matrix

Lecture 32 ImageNet is a Convolutional Neural Network (CNN), The Convolution Rule

Lecture 33 Neural Nets and the Learning Function

Lecture 34 Distance Matrices, Procrustes Problem

Lecture 35 Finding Clusters in Graphs

Lecture 36 Alan Edelman and Julia Language

Lecture 4: Eigenvalues and Eigenvectors

Last time:

  • Orthogonal Matrices Q Q Q

This time:

  • Eigenvectors and Eigenvalues of matrix A A A
  • Eigenvectors and Eigenvalues of Symmetric Matrices S S S

4.1 Egienvectors and Eigenvalues of matrix A

  • For A x Ax Ax ( A A A is n × n n\times n n×n)
    • if x is especially chosen well
    • Ax就能恰好和x有着same direction:
    • 即** A x = λ x Ax=\lambda x Ax=λx**
    • Eigenvectors x x x and Eigenvalues λ \lambda λ

Q1: What is “Eigenvectors” good for?

由定义, 特征向量x很special, 但它useful吗?
special is good, but useful is even better

  • 性质1:关于 A k A^k Ak

    • Given A x = λ x Ax = \lambda x Ax=λx

    • ⇒ \Rightarrow A 2 x A^2 x A2x = A ( A x ) A (Ax) A(Ax) = A ( λ ) x A (\lambda)x A(λ)x = λ 2 \lambda^2 λ2 x x x

    • x也是 A 2 A^2 A2的特征向量!

      ▪ Eigenvalue: λ 2 \lambda^2 λ2

    • 同理, A n x = λ n x A^n x = \lambda^n x Anx=λnx

      A − 1 x = 1 λ x A^{-1} x = \frac{1}{\lambda} x A1x=λ1x (前提是 λ ≠ 0 \lambda \not ={0} λ=0 即 A不可逆)

      e A t x = e λ t x e^{At}x = e^{\lambda t}x eAtx=eλtx

    • Take any vector v ∈ R n \in R^n Rn,

      ▪ 假设矩阵A有n个不同的特征向量 A x i = λ i x i Ax_i = \lambda_i x_i Axi=λixi ( i = 1 , 2 , . . . , n i = 1,2, ..., n i=1,2,...,n)

      ▪ 若v能够被写为这些eigenvectors x i x_i xi 的combination: v = c 1 x 1 + c 2 x 2 + c 3 x 3 + . . . + c n x n v = c_1 x_1 + c_2 x_2 + c_3 x_3 + ... + c_n x_n v=c1x1+c2x2+c3x3+...+cnxn

      ▪ 则有: A k v = c 1 λ 1 k x 1 + c 2 λ 2 k x 2 + c 3 λ 3 k x 3 + . . . + c n λ n k x n A^k v = c_1 \lambda_1^k x_1 + c_2 \lambda_2^k x_2 + c_3 \lambda_3^k x_3 + ... + c_n \lambda_n^k x_n Akv=c1λ1kx1+c2λ2kx2+c3λ3kx3+...+cnλnkxn

    • 因此,特征值特征向量的第一个用处:帮助计算 A k x A^k x Akx A A A的矩阵函数、方程等

      ▪ 例如,已知 V k = A k v V_k = A^k v Vk=Akv, 那么利用Eigenvectors和Eigenvalues, 求 V k + 1 = A V k V_{k+1} = A V_k Vk+1=AVk d V / d t = A v dV/dt = Av dV/dt=Av就会很方便

  • 性质2:关于相似矩阵

    • Similar matrix: B is similar to A:

      ∃ \exist invertible matrix M : B = M − 1 A M M: B = M^{-1} A M M:B=M1AM

    • Then, A and B have the same eigenvalues

    • i.e., Similar matrices ⇒ \Rightarrow Same Eigenvalues

    • MATLAB计算EigenValues的方法:

      ▪ 通过多次similar transform: change A A A ⇒ \Rightarrow M 1 M_1 M1 ⇒ \Rightarrow M 2 M_2 M2 , … ✅ ⇒ \Rightarrow finally to a triangular matrix

      ▪ 从而 acquire the eigenvalues

      ▪ (If A is a symmetric matrix, it will go to a diagonal matrix (不仅仅是triangular matrix))

    • Proof: (Similar matrices ⇒ \Rightarrow Same Eigenvalues)

      ▪ what we know: B = M − 1 A M B = M^{-1} A M B=M1AM

      ▪ 若 M − 1 A M y = λ y M^{-1} A M y = \lambda y M1AMy=λy

      ⇒ \Rightarrow A M y = λ M y AMy = \lambda My AMy=λMy

      ⇒ \Rightarrow KaTeX parse error: Undefined control sequence: \lamda at position 10: A (My) = \̲l̲a̲m̲d̲a̲ ̲(My)

      ⇒ \Rightarrow λ \lambda λ也是A的一个 eigenvalue

    • 练习1:证明 AB has the same non-zero eigenvalues as BA?

      ∀ A , B ∈ R n × n \forall A, B \in R^{n\times n} A,BRn×n

      want show that AB and BA are similar:

      M ( A B ) M − 1 = B A M(AB)M^{-1} = BA M(AB)M1=BA
      ✅ Just Let M = B M = B M=B #
      ✅ 前提是特征值non-zero: 否则cannot determine whether M − 1 M^{-1} M1 exists

    • 练习2:矩阵的特征值是否满足可加性、可乘性?

      ▪ If I know the eigenvalues λ ( A ) , λ ( B ) \lambda(A), \lambda(B) λ(A),λ(B) of A A A and B B B, repectively, can I get eigenvalues of AB by λ ( A ) λ ( b ) \lambda(A)\lambda(b) λ(A)λ(b)?

      No!

      ▪ also λ ( A ) + λ ( B ) ≠ λ ( A + B ) \lambda(A) + \lambda(B) \not ={\lambda(A+B)} λ(A)+λ(B)=λ(A+B)

4.2 Egienvectors and Eigenvalues of real Symmetric Matrix S

  • Are eigenvalues of S S S are real numbers?
    • Other real matrices could have imaginary eigenvalues

    • Let A S = [ 0 1 − 1 0 ] AS = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} AS=[0110]

      a 90 ∘ ^\circ rotation

      ▪ Anit-symmetric matrix

      ▪ Are eigenvalues os A S AS AS are imaginary numbers

      ▪ 物理理解:90度旋转矩阵AS, 乘以任何一个向量x都不可能不改变该向量的方向 A x = λ x Ax = \lambda x Ax=λx

      ▪ 所以 特征值 λ \lambda λ和特征向量 x x x不是实数而是虚数!

      ▪ 数学计算:

      A x = λ x Ax = \lambda x Ax=λx

      ⇒ \Rightarrow 存在非0的x,使得 ( A − λ I ) x = 0 (A-\lambda I) x = 0 (AλI)x=0

      ⇒ \Rightarrow ( A − λ I ) (A-\lambda I) (AλI) 不可逆 ⇒ \Rightarrow d e t ( A − λ I ) det(A-\lambda I) det(AλI) = 0

      d e t ( A S − λ I ) = [ λ 1 − 1 − λ ] det(AS - \lambda I) = \begin{bmatrix} \lambda & 1 \\ -1 & - \lambda \end{bmatrix} det(ASλI)=[λ11λ] = λ 2 \lambda ^2 λ2 + 1 = 0 ⇒ \Rightarrow λ = i , − i \lambda = i, -i λ=i,i ⇒ \Rightarrow


To way to check the eigenvalues:

  • 特征值之和 = 对角线之和 (trace)

    • Add all eigenvalues = Add all diagonal elements
    • a way to check the calculated eigenvalues
  • 特征值之积 = Determinant (det A A A)


  • For Symmetric Matrix:
    • eigenvalues are real;

    • eigenvectors are orthogonal

      ▪ 意味着full set of eigenvectors! (even if some eigenvalues may be repeated)

    • check: using trace and det

    • Example: S = [ 0 1 1 0 ] S = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} S=[0110]

      ▪ Eigenvalues λ = 1 , − 1 \lambda = 1, -1 λ=1,1

      ▪ Eigenvectors x = [ 1 1 ] , [ 1 − 1 ] x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} x=[11],[11]

      Λ = [ 1 0 0 − 1 ] \Lambda = \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix} Λ=[1001]

    • 特征值相同的矩阵是否相似?

      ▪ 上面的 S S S Λ \Lambda Λ have the same eigenvalues

      ▪ If they are similar: ∃ \exist invertible M M M S M = M Λ SM = M\Lambda SM=MΛ

      👉 令 M = [ x 1 , x 2 ] M = [x_1, x_2] M=[x1,x2], then S [ x 1 x 2 ] S \begin{bmatrix} x_1 & x_2\\ \end{bmatrix} S[x1x2] = [ x 1 x 2 ] [ λ 1 0 0 λ 2 ] \begin{bmatrix} x_1 & x_2\\ \end{bmatrix} \begin{bmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{bmatrix} [x1x2][λ100λ2]

      ▪ 看上去是相似的。但是上面的推导有一个前提:特征值构成的矩阵 M M M必须可逆!

      ▪ If Matrix A has eigenvectors x 1 , x 2 , . . . , x n x_1, x_2, ..., x_n x1,x2,...,xn and eigenvalues λ 1 , λ 2 , . . . , λ n \lambda_1, \lambda_2, ..., \lambda_n λ1,λ2,...,λn

      👉 A [ x 1 , x 2 , . . . , x n ] = [ x 1 , x 2 , . . . , x n ] [ λ 1 . . . 0 . . . . . . . . . 0 . . . . . . λ 2 ] A[x_1, x_2, ..., x_n] = [x_1, x_2, ..., x_n] \begin{bmatrix} \lambda_1 & ... & 0\\ ... & ... & ... \\ 0 & ... & ...\lambda_2 \end{bmatrix} A[x1,x2,...,xn]=[x1,x2,...,xn]λ1...0.........0......λ2

      👉 ⇒ \Rightarrow A X = X Λ AX = X \Lambda AX=XΛ

      🚩 ⇒ \Rightarrow A与 Λ \Lambda Λ相似: A = X Λ X − 1 A = X \Lambda X^{-1} A=XΛX1 (前提是 X X X可逆)

      ✅ 利用上述公式,可直接得到 A 2 A^2 A2的特征值: A 2 = X Λ 2 X − 1 A^2 = X \Lambda^2 X^{-1} A2=XΛ2X1

      ▪ 对于Symmetric matrix S S S:

      👉 its eigenvectors matrix X is orthogonal: denoted as Q Q Q

      👉 ⇒ \Rightarrow S = Q Λ Q − 1 = Q Λ Q T S = Q \Lambda Q^{-1} = Q \Lambda Q^T S=QΛQ1=QΛQT

      👉 Spectral Theorem: Every symmetric matrix 都能分解为 Q Λ Q T Q \Lambda Q^T QΛQT 的形式

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R.X. NLOS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值