简要介绍 | 自监督学习:挖掘数据内在价值的新兴方法

121 篇文章 115 订阅 ¥29.90 ¥99.00

自监督学习:挖掘数据内在价值的新兴方法

1. 引言

在深度学习领域,监督式学习长期以来一直占据主导地位。然而,随着 自监督学习 (SSL) 方法的出现,我们开始尝试从大量未标注数据中挖掘知识。本文将详细介绍自监督学习的基本概念、主要方法及其在各领域的应用。

2. 自监督学习基本概念

自监督学习(Self-supervised learning) 是一种无监督学习方法,其主要任务是从未标注的数据中学习有用的表示。通过设计一个 预测任务,网络被迫学习到数据的内在结构。这些预测任务通常以数据自身作为监督信号,而不需要人工标注。

自监督学习的一个关键概念是 编码器(Encoder),它将输入数据映射到一个低维表示空间。在训练过程中,编码器通过最小化预测任务的损失函数来学习。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R.X. NLOS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值