背景
近日使用YOLO算法进行目标检测任务的时候,对于输出的几张图片产生了疑惑,故在此复习与巩固。
图片说明
confusion_matrix(混淆矩阵):
- 混淆矩阵是一种用来衡量分类模型性能的表格。横坐标为实际真值,纵坐标为预测值。它展示了模型对真实类别和预测类别的分类结果。
- 通过混淆矩阵,我们可以看到模型对于各个类别的正确分类(真阳性/真阴性)和错误分类(假阳性/假阴性)的数量。数量越大,对应的点颜色越深
confusion_matrix_normalized(归一化混淆矩阵):
- 归一化混淆矩阵是将混淆矩阵中的每个元素除以对应类别的真实样本数,从而得到每个类别的分类准确率。
- 归一化混淆矩阵有助于比较不同类别之间的性能,因为不同类别的样本数量可能不同。
F1_curve(F1曲线):
- F1分数是精确率和召回率的调和平均值,用于评估分类模型的性能。
- F1曲线可能指的是在不同阈值下F1分数的变化