YOLO算法输出图像含义以及理解

背景

        近日使用YOLO算法进行目标检测任务的时候,对于输出的几张图片产生了疑惑,故在此复习与巩固。

图片说明

confusion_matrix(混淆矩阵)

  • 混淆矩阵是一种用来衡量分类模型性能的表格。横坐标为实际真值,纵坐标为预测值。它展示了模型对真实类别和预测类别的分类结果。
  • 通过混淆矩阵,我们可以看到模型对于各个类别的正确分类(真阳性/真阴性)和错误分类(假阳性/假阴性)的数量。数量越大,对应的点颜色越深

confusion_matrix_normalized(归一化混淆矩阵)

  • 归一化混淆矩阵是将混淆矩阵中的每个元素除以对应类别的真实样本数,从而得到每个类别的分类准确率。
  • 归一化混淆矩阵有助于比较不同类别之间的性能,因为不同类别的样本数量可能不同。

F1_curve(F1曲线)

  • F1分数是精确率和召回率的调和平均值,用于评估分类模型的性能。
  • F1曲线可能指的是在不同阈值下F1分数的变化
### YOLO算法流程概述 YOLO (You Only Look Once) 系列算法因其高效性和准确性而在实时目标检测领域占据重要地位。对于YOLO v3的工作原理,其核心在于将输入图像划分成多个网格单元来进行对象的检测与分类[^1]。 #### 输入阶段 - **图像预处理**:接收任意尺寸的输入图像并调整至特定分辨率以便于后续计算。 #### 特征提取过程 - **多尺度预测**:利用Darknet-53作为骨干网络进行特征抽取,在不同层次上实现特征融合以捕捉更丰富的语义信息。 - **特征图生成**:最终得到三个不同比例尺下的特征表示用于后续操作。 #### 预测机制 - **边界框回归**:每个网格单元负责预测固定数量的锚点框及其置信度得分;这些锚点框代表可能存在的物体位置。 - **类别概率估计**:同时为每一个潜在的对象提供一组类别的条件分布情况说明。 #### 后处理步骤 - **非极大抑制(NMS)**:去除冗余重叠较高的候选框只保留最优解。 - **输出结果整理**:形成最终的目标列表形式返回给调用者展示或进一步分析使用。 虽然这里没有直接给出具体的图形化描述,但是按照上述结构可以构建出YOLOv3完整的执行路径图表。通常情况下,这类架构会被绘制成一种分层式的流程框架图,其中每一层对应着不同的处理环节,并且通过箭头指示数据流动的方向以及各组件之间的交互关系。 ```mermaid graph TD; A[输入图像] --> B{预处理}; B --> C[调整大小]; C --> D[送入 Darknet-53 ]; D --> E[获取多尺度特征]; E --> F[生成特征图]; F --> G[边界框回归]; F --> H[类别概率估计]; I[NMS 过滤重复框]; J[输出检测结果]; G & H --> I; I --> J; ``` 此Mermaid语法定义了一个简单的YOLO算法工作流示意,能够帮助理解各个主要组成部分是如何协同作用完成整个任务链路的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千天夜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值