数据增强之从对抗训练(AT)到自对抗训练(SAT)

近年来,对抗样本(Adversarial Examples)及其防御方法成为计算机视觉(CV)领域的研究热点。对抗训练(Adversarial Training)作为最有效的防御机制之一,通过在训练过程中引入对抗样本,提高模型的鲁棒性。而自对抗训练(Self-Adversarial Training)则在对抗训练的基础上,进一步降低计算成本。

本文将以 CV 算法为例,由浅入深地介绍对抗训练与自对抗训练的核心思想、公式推导、优缺点对比及改进方向。


目录

一、对抗训练:核心思想与公式推导

1. 对抗训练的核心公式

参数说明:

2. 常用对抗样本生成方法

(1)FGSM(Fast Gradient Sign Method)

(2)PGD(Projected Gradient Descent)

(3)DeepFool

1. 核心公式

2. 动态步长自对抗训练

3. 公式的含义和作用

三、对抗训练与自对抗训练对比

优缺点对比

共同点与不同点

五、总结


一、对抗训练:核心思想与公式推导

对抗训练的目标是在训练过程中生成最具挑战性的对抗样本,从而提升模型的鲁棒性。

1. 对抗训练的核心公式

对抗训练的优化目标是一个双层优化问题:

\min_{\theta} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[ \max_{\delta \in \Delta} \mathcal{L}(f_\theta(x + \delta), y) \right]

参数说明:
  • x \in \mathbb{R}^{H \times W \times C}:输入图像,其中 H 是高度,W 是宽度,C 是通道数(如 RGB 通道)。
  • y:标签,表示输入样本的真实类别。
  • \delta \in \mathbb{R}^{H \times W \times C}:对抗扰动,表示每个像素点的扰动大小。
  • \Delta:扰动的约束集合,通常规定 \|\delta\|_p \leq \epsilon

公式 \|\delta\|_p \leq \epsilon 的含义是对抗扰动 \delta 的大小受 p-范数约束。

\|\delta\|_p是向量 \delta的p-范数

定义为:

\|\delta\|_p = \left( \sum_{i=1}^n |\delta_i|^p \right)^{\frac{1}{p}}

这里,\delta_i 是向量中第 i 个分量,n 是总分量数(例如图像中所有像素点的总数)。

  • p=2 时,这是欧几里得范数(L_2-范数),表示扰动的平方和的平方根。
  • p=\infty 时,这是最大范数(L_\infty-范数),表示所有分量的最大绝对值。

\epsilon 是扰动的最大允许幅度:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千天夜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值