Variational inference

 

bayes推断最麻烦的就是对概率密度的计算,相比较于MCMC算法,VI具有更快的速度,也更能理解——我们需要近似出概率密度。首先假象一个密度簇,然后找到对应的组成部分,接近目标,KL散度用来评估,需要不断优化。

 

在贝叶斯统计中,未知量的计算都可以看作(涉及)后验概率密度的推断,p(z, x) = p(z)p(x | z). 先验和似然的乘积得到全概率。

 

对比采样,我们的主要实现是优化过程:首先假想近似密度簇,即潜在变量的集合;然后利用最小化KL散度的方法得到后验,利用到密度簇的成员;最后近似处理后验,优化成员变量。

q(z) = argmin KL (q(z)||p(z|x)) 注意,这里是后验不是似然。

变分把推断问题转变成了优化问题。最难的在于,我们需要选择密度簇,足够灵活,可以和后验密度接近;足够简单,可以有效的优化。

 

数据集大小和后验分布的结构,确立使用范围,MC和VI。

 

方法:平均场推断和坐标上升优化

目标:给定观测值,近似出潜在变量的条件密度,关键是优化过程。

 

 

KL散度最大是得不出来的,分解后很复杂

所以用另一个目标函数ELBO,两部分组成,利用log(px)-KL:

 

第一部分为似然的期望,鼓励潜在的密度能解释观测值;第二部分变分密度和先验的负数,鼓励了密度接近先验。因为我们想得到ELBO的最大值,即KL的最小值——这是后验和密度分布相等。
 

需要用到EM算法(求似然估计)。。。。

 

 

 

变分推断是一种用于近似求解复杂概率模型后验概率分布的技术。在贝叶斯统计中,我们希望从观测数据推断出最有可能的模型参数。然而,在大多数情况下,由于模型复杂性和计算复杂度的限制,我们很难直接计算后验分布。这时候,变分推断能够通过引入一个简化的概率分布来近似后验分布。 变分推断的基本思想是为原始贝叶斯问题构造一个等价的变分问题,并通过最小化两者之间的差异来求解。具体而言,它假设一个简单的参数化概率分布(即变分分布),并试图通过调整分布参数来使其尽可能接近真实后验。 为了找到最优的变分分布,变分推断利用变分推理和优化方法进行迭代求解。在每次迭代中,它通过最大化变分推理下界来逼近后验分布。这个下界称为证据下界或ELBO(证据下界)。 变分推断的优点在于它可以同时处理大规模和高复杂度的模型,而且能够处理连续和离散变量的混合问题。它还可以灵活地处理缺失数据并处理不同类型数据之间的关联。 然而,变分推断也有其局限性。首先,变分分布选择是一个挑战,如果选择的分布偏离真实后验分布,可能导致近似结果的偏差。其次,变分推断通常需要计算复杂度高且对初始参数值敏感的迭代求解。因此,它可能无法在所有情况下提供最优的近似解。 综上所述,变分推断是一种强大的近似推理方法,可以用于处理复杂概率模型的后验分布。它在计算效率和模型灵活性方面具有一定优势,但同时也存在某些局限性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值