代码复现
文章平均质量分 65
玛卡巴卡_qin
这个作者很懒,什么都没留下…
展开
-
VQ-BeT: Behavior Generation with Latent Actions 代码复现(Mujoco 安装)
修改 ./examples/configs/env_vars/env_vars.yaml 中,对应路径。修改 ./examples/configs/train_kitchen_goalcond.yaml。用到wandb的地方把entity注释掉,防止莫名报错。安装对应版本的mujoco-py。patchelf 错误。原创 2024-04-11 19:16:28 · 541 阅读 · 0 评论 -
VOD-SLAM 复现 AirDos 复现
CSparse 库安装把Frame.cc里面的xfeatures2d.hpp改为features2d.hpp直接注释掉,把函数换为下面的函数。原创 2024-01-27 15:05:01 · 601 阅读 · 0 评论 -
RAFT3D 代码复现
【代码】RAFT3D 代码复现。原创 2023-11-14 10:14:16 · 287 阅读 · 0 评论 -
Learning to Segment Rigid Motions from Two Frames 代码复现
1.拉取代码2.创建conda环境,修改rigidmask.ymlDCNv2和ngransac。原创 2023-11-02 16:53:10 · 331 阅读 · 1 评论 -
Raptor NGRANSAC兼容版
1.创建conda 环境2.安装ngransac3.安装mmcv4.Raptor安装,设定setup.py5.raft修改版安装修改setup.py。原创 2023-11-01 10:48:47 · 212 阅读 · 0 评论 -
SAM:Segment Anything 代码复现和测试 基本使用
其他instruction,都是在这个基础上进行处理。1.创建environment.yaml。修改标签,得到不一样的结果。模型训练(waiting)原创 2023-10-31 21:03:23 · 3500 阅读 · 4 评论 -
Monocular arbitrary moving object discovery and segmentation(Raptor,NG-RANSAC 安装) 代码复现
1.创建environment.yaml2.安装mmcv3.Raptor安装安装前建议看一看setup.py 设置一下库的版本4.RAFT修改版安装5.下载模型。原创 2023-10-24 20:52:11 · 181 阅读 · 0 评论 -
PVO: Panoptic Visual Odometry代码复现(如何在脚本设置GPU选择,软链接映射数据集)
1.拉取代码这个工程中的VO_Module中的thirdparty部分需要用DROID-SLAM的替换之后才行具体参考我另一篇博客2.创建环境修改environment.yaml的文件内容3.安装全景分割的部分4.处理数据集下载vkitti生成训练和测试的数据集。原创 2023-10-22 23:13:47 · 447 阅读 · 15 评论 -
R3D3: Dense 3D Reconstruction of Dynamic Scenes from Multiple Cameras 代码复现(tmux基本操作,torrent 种子下载)
3.按下快捷键Ctrl+b d将会话分离(不是同时按)。2.在 Tmux 窗口运行所需的程序。1.改一下配置文件里的数据集路径。4.下次使用时,重新连接到会话。1.在终端单开一个tmux端口。下载这个Mini先测试一下。不行就单独下再放进去。原创 2023-10-20 19:08:08 · 420 阅读 · 4 评论 -
TartanVO: A Generalizable Learning-based VO 服务器复现(rtx3090 py3)
跑的时候会报错缺乏那些文件,需要自己在相关from import 的代码前加上那个文件夹的名字。KITTI 数据集上进场测试,创建run.sh。原创 2023-10-13 19:16:51 · 323 阅读 · 0 评论 -
DytanVO 代码复现(服务器端复现rtx3090)
(另外一个数据集AirDOS-Shibuya给的链接没办法下载)创建一个run.sh的脚本,在脚本里输入(修改了一下模型名称)3.创建一个requirements.txt,安装相关的库。跑起来了,不容易呀,复现了这么久。根据github的链接来下载。下载后解压到对应文件夹。创建一个放结果的文件夹。原创 2023-10-13 18:12:02 · 434 阅读 · 4 评论 -
Modality-invariant Visual Odometry for Embodied Vision 代码复现(docker使用)
创建environment.yml。3.安装habitat-sim。4.安装habitat-lab。直接参考原本github库。1.拉取github库。6.配置数据集和模型。7.运行eval脚本。原创 2023-10-10 19:35:59 · 255 阅读 · 0 评论 -
The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation 代码复现
第一次把navigation的代码run起来,纪念一下。修改environment.yml。2.安装habitat-sim。4.安装habitat-lab。直接参考原本github库的。3.拉取github库。5.配置数据集和模型。6.运行eval脚本。原创 2023-10-10 16:22:18 · 93 阅读 · 0 评论 -
复现densefuse-pytorch问题记录 Ubuntu20复现
我是直接在pytorch1.12.1+cu113上复现的,具体要改哪些可以根据你的报错来看可以参考这边博客,当然她不全面,建议直接复制我的代码替换后再看还会有什么问题。原创 2022-10-30 23:56:04 · 1096 阅读 · 5 评论 -
NICE-SLAM代码复现和解析(解决使用yaml文件配置conda环境时下载慢的问题)
按照github的说法,咱国内选手最好选哪个下载脚本里面额外的那个数据集手动下载,如下(非常良心,这个云盘居然不下载不限速)在这个环境里面后,貌似还要写一个requirements.txt文件来把需要pip安装的加了(最好带清华源进行安装)方法同上,下载后放到在给工程下创建的./Datasets,解压。下载压缩包,打开environment.yaml文件。上一个命令会创建一个nice-slam环境,激活环境。我的GTX3070寄了,游戏结束~3. 运行完成后,效果还是不错。向yaml文件中添加如下代码。原创 2023-07-30 21:39:30 · 2026 阅读 · 10 评论 -
DPVO服务器端复现
1.下载代码2.创建环境3.安装DPVO包。原创 2023-09-21 19:59:29 · 508 阅读 · 0 评论 -
DROID-SLAM复现(服务器端复现,yaml创建env,)
DROID-SLAM 复现原创 2023-09-04 18:37:03 · 1392 阅读 · 7 评论