LLaMA论文阅读

LLaMA论文阅读

0. 简介

LLaMA 训练了从7B到65B不同参数量的模型,从Hoffmann的论文【Training compute-optimal large languag】中证明了在有限计算代价的情况下(给定总的FLOPs大小),表现最好的不是参数量最大的模型,而是在更多数据上训练的稍小的模型。

LLaMA实现了两个目标:

  1. LLaMA-13B跟GPT-3相比, 参数量小了10倍,但效果更好;LLaMA-65B比Chinchilla-70B和PaLM-540B更好。
  2. 只依赖公开的开源数据集也可以达到最好的SOTA效果。

1. 论文阅读

1.1 训练数据

使用了多数据集的混合,对相应数据集做了对应的清理,例如重复数据去重、针对CommonCrawl训练了一个分类模型用于过滤没有被Wikipedia引用的低质量数据等。整体的训练数据包含总共有1.4T个token。

DatasetSampling prop.EpochsDisk size
CommonCrawl67.0%1.103.3 TB
C415.0%1.06783 GB
Github4.5%0.64328 GB
Wikipedia4.5%2.4583 GB
Books4.5%2.2385 GB
ArXiv2.5%1.0692 GB
StackExchange2.0%1.0378 GB
  • Sampling prop 表示抽样比例
  • Epochs表示当在1.4T tokens训练时作用到不同数据集的epoch数

1.2 tokenizer

1.2.1 BPE(Byte pair encoding)

使用BPE(Byte pair encoding)进行tokenizer,BPE方法是一种简单又鲁棒的数据压缩方法,基本思路是对于一个句子中连续字符使用一个新的字符进行替换,从而达到数据压缩的作用,对数据还原时才用lookup查表的方式,依次反向对字符进行反向替换恢复数据。

例如对aaabdaaabac压缩,依次通过如下方式进行替换:

# 1. 原始字符串
aaabdaaabac

# 2. 使用Z替换aa
ZabdZabac
Z=aa

# 3. 使用Y替换ab 
ZYdZYac
Y=ab
Z=aa

# 4. 使用X替换ZY
XdXac
X=ZY
Y=ab
Z=aa
1.2.2 SentencePiece

SentencePiece是google对BPE思想的一种实现,除了BPE还实现了unigram language model,LLaMA使用SentencePiece进行tokenizer。

具体可参考:SentencePiece论文阅读

1.3 LLaMA模型结构

整体模型基于transformer结构,在此基础上整合了多个其他模型中的改动方法,具体如下:

  • Pre-normalization [GPT3]:使用RMSNorm(Root Mean Square Layer Normalization)方法对transformer每层的输入进行归约(norm)操作,代替了transformer之前对输出进行归约(norm)。
    具体可参考:RMSNorm论文阅读
  • SwiGLU activation function [PaLM]:使用SwiGLU激活函数代替Relu激活函数,跟PaLM不同的是dimension维度从4d变为了2/3*4d。
    具体可参考:SwiGLU论文阅读
  • Rotary Embeddings [GPTNeo]:去除了transformer中绝对位置embedding,使用旋转式的位置embedding。
    具体可参考:Rotary Position Embeddings论文阅读

1.4 训练参数配置

  • 使用AdamW优化器,对应超参beta1=0.9, beta2=0.95; 使用cosine学习率调度,最终学习率是最大学习率的10%;weight decay为0.1, gradient clipping为0.1。
  • 训练使用前2000个step进行warmup
  • 不同规模的模型大小如下:
    在这里插入图片描述

1.5 高效实现

使用了如下方式提升模型训练的速度:

  • 使用causal multi-head attention进行显存降低。对应实现是【xformers】。在这个方法中不用存储attention的权重,同时不用计算被masked的key/query的分数。
  • 在反向pass中使用checkpointing的方法减少激活的重计算。这里不能使用pytorch默认的autograd,需要手动实现transformer的反向。
  • 使用model并行和sequece并行。对应megatron3中的优化【Reducing Activation Recomputation in Large Transformer Models】。
  • 将activation的计算和不同gpu卡的通信(all_reduce操作)进行重叠

训练65B参数的模型,使用了2048块80G显存大小的A100卡,处理对应380 tokens/sec/GPU,1.4T个token训练了有21天。训练loss如下:
在这里插入图片描述

1.6 结果说明

结果参考论文【3 Main results】

2. 实现

TODO

3. 参考

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MLTalks

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值