学会区分大模型——大模型的分类,让你更清晰的认识大模型

“ 乱花渐欲迷人眼,学会从根本上认识问题”

现在市面上大模型如百花齐放,对很多人来说一堆大模型带来的不是简单方便,而是乱七八糟以及迷茫。

因为不知道不同的大模型之间有什么区别,也不知道自己需要什么样的大模型;就拿huggingface来说,上面的模型有几十万,有几个人能弄明白它们都是干什么的?‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

因此,我们首先需要学会的就是大模型的分类,对大模型分门别类之后就知道哪些大模型是做什么的,自己需要的是什么了。‍‍‍‍‍‍‍‍‍‍‍‍

01

大模型的分类

事实上直接说大模型并不是特别准确,大模型指的是具有庞大参数的机器学习或者深度学习模型。

根据模型的参数量可以分为大/中/小三种类型,不同的模型对资源要求不同,应用的场景也不同;比如一些小模型可能会安装到移动设备之上。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

按任务类型分类

根据任务类型,大模型可以分为生成式模型,判别式模型和混合模型。‍

生成式模型:这种模型主要用于生成内容,包括文本,图像,音视频等;典型的比如GPT模型。‍‍‍‍‍‍‍‍‍‍‍‍‍‍

判别式模型:判别式模型主要应用于分类,预测等任务;如图像分类,文本分类等;比如Bert模型。‍‍‍‍‍‍‍‍‍‍‍‍

混合模型:混合模型结合生成式和判别式模型的能力,能够在生成内容的同时进行分类或判别任务。‍‍‍‍‍‍

当然,这个按任务分类只是进行简单的分类,如果再细化还有更多的分类方式,比如情感分析等。‍‍

按数据模态分类

根据数据模态,大模型主要分为两类,一类是单模态模型,一类是多模态模型。‍‍‍

单模态模型:单模态就是仅支持一种模态数据的模型,比如支持文本或者图片等类型的模型;如ResNet处理图像,BERT模型处理文本。‍‍‍‍‍‍‍‍‍‍‍

多模态模型:能够同时处理多种类型的数据,如文本,图像,音视频等;如CLIP模型结合了文本和图像处理的功能。‍‍‍‍‍‍‍‍‍‍‍

_按训练方法分类_‍

按训练方法进行分类,主要有预训练模型,从零训练模型和迁移学习模型。‍‍‍‍‍‍‍‍‍

预训练模型:通常在大规模数据集上进行预训练,然后通过微调适应特定任务,如GPT,BERT等。‍‍‍‍‍‍‍‍‍

从零训练模型:从头开始训练的模型,通常在特定任务上训练,数据集要求较高。‍‍‍‍

迁移学习模型:迁移学习通常是指在一个任务中学习的知识迁移到另一个相关任务中;能够减少训练时间并提升性能。‍‍‍‍‍‍

按应用领域分类

按照应用领域分类,主要分为自然语言处理,计算机视觉模型,以及语音处理模型等。‍‍‍‍‍‍‍‍

自然语言处理模型:专门用于处理和理解人类的语言,如文本生成,翻译,情感分析等任务。

计算机视觉模型:用于处理和理解图像或视频数据,如图像分类,目标检测,图像生成等任务。‍‍‍‍‍

语音处理模型:用于处理语音信号,包括语音识别,合成,情感分析等任务。‍‍

基于自然语言处理的人工智能机器人:‍‍‍‍‍‍‍‍

_按模型架构分类_‍‍

按模型架构分类,主要分为transformer架构,卷积神经网络和循环神经网络以及长短期记忆网络。‍‍‍‍‍‍

transformer架构:transformer架构应该就不用多说了,大名鼎鼎的GPT就是基于Transformer架构,广泛应用于自然语言处理和多模态任务中。‍‍‍‍‍

卷积神经网络:主要应用于计算机视觉任务中。‍‍‍

循环神经网络和长短期记忆网络:传统上用于处理时间序列数据或语音处理任务。‍‍‍‍‍

当然,大模型的分类还有多种不同的形式,以上分类方式是目前比较主流的方式而已。比如说有应用于代码开发的代码生成模型,用于数据处理的数据分析模型等。

弄清楚模型的分类,有助于加深对模型的理解;比如说有人提到GPT,你就能知道它是一个基于Transformer架构的,能够进行自然语言处理与生成的预训练模型。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

在大模型时代,我们如何有效的去学习大模型?

现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也_想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家_。

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,下面是我整理好的一套完整的学习路线,希望能够帮助到你们学习AI大模型。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

三、AI大模型经典PDF书籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

在这里插入图片描述

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

四、AI大模型各大场景实战案例

在这里插入图片描述

结语

【一一AGI大模型学习 所有资源获取处(无偿领取)一一】
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值