《向量数据库指南》——什么是比较 Embedding?

本文通过word2vec模型探讨如何比较非结构化数据的Embedding,展示语义相似和不相似的向量表示。通过Marlon Brando、国王与王后以及Apple的例子,解释了如何进行向量加减以揭示潜在的语义变化,并介绍了近邻搜索和距离度量的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

比较 Embedding

准备工作

示例 0:Marlon Brando

示例 1:国王与王后

示例 2:Apple,水果还是公司


欢迎回到向量数据库 101 系列教程。

之前的教程中,我们介绍了非结构化数据、向量数据库和 Milvus——全球最受欢迎的开源向量数据库。我们还简单介绍了 Embedding 的相关概念,它代表高维向量,可以用作非结构化数据的语义表示,彼此临近的 Embedding 代表语义上是相似的。

 

本教程中,我们将在这些知识的基础上,通过单词 Embedding 的例子,看看语义相似的非结构化数据是如何相邻的,而不相似的非结构化数据是如何相互“远离”的。这属于近邻搜索的高层次概述,是一个计算问题,涉及到根据统一的距离度量来寻找与查询向量最接近的向量。我们会讨论一些主流的近邻搜索方法(包括我最喜欢的 ANNOY),以及常用的距离度量。

我们开始吧。

比较 Embedding

我们来看下几个词的 Embedding 向量的示例。下面例子中,我们将使用 word2vec,它这是一个古老的模型,使用

<think>嗯,用户之前问过“钧瓷婆罗门”,现在又转向“向量数据库指南”。看起来他们可能是在做某个项目或者学习过程中遇到了不同的主题。首先,我需要确定用户的需求是什么。他们可能想了解向量数据库的基本概念、应用场景,或者如何选择和使用这类数据库。 接下来,我需要考虑用户可能的背景。之前的提问涉及中国传统文化,现在转向技术性的数据库,这可能意味着用户的学习或工作领域跨度较大,或者他们正在处理一个跨学科的项目。比如,他们可能在做数据分析相关的项目,需要处理高维数据,比如图像、文本的嵌入向量,所以需要了解向量数据库。 用户可能没有明确说出他们的具体需求,比如他们是否需要比较不同的向量数据库,或者想了解如何实现一个向量数据库系统。这时候,回答需要覆盖基础知识和实用指南,同时提供资源推荐,以满足不同层次的需求。 另外,用户可能对向量数据库的优势和传统数据库的区别不太清楚,需要解释清楚为什么向量数据库在处理相似性搜索时更高效。同时,他们可能关心实际应用案例,比如推荐系统、自然语言处理中的应用,这些都需要具体说明。 还要注意用户可能存在的误区,比如认为所有数据库都适合高维数据,或者对近似最近邻算法(ANN)不太了解,需要简明扼要地解释这些概念,避免使用过多专业术语,但又足够准确。 最后,考虑到用户可能需要进一步的学习资源,提供一些开源项目、书籍和在线教程的链接会很有帮助。这样用户可以根据自己的需求深入学习和实践。</think>以下是关于**向量数据库**的详细介绍与实用指南,内容分点清晰,便于理解: --- ### 一、**向量数据库的定义** - **核心概念**: 向量数据库(Vector Database)是专门存储、检索**高维向量数据**的数据库系统,适用于人工智能场景(如文本、图像、音频的嵌入向量)。 $$ \text{向量数据} = [v_1, v_2, \dots, v_n] \in \mathbb{R}^n \quad (\text{例:BERT输出为768维向量}) $$ - **与传统数据库差异**: | **传统数据库** | **向量数据库** | |----------------|----------------| | 精确匹配(SQL查询) | 相似性搜索(如余弦相似度) | | 行/列结构化存储 | 高维向量非结构化存储 | | 适合数值/文本 | 适合AI生成的数据 | --- ### 二、**核心功能与优势** 1. **高效相似性搜索** - 支持**近似最近邻(ANN)算法**,快速在海量数据中找到相似向量。 - 算法示例: - 树型结构(KD-Tree, Ball-Tree) - 量化方法(PQ, LSH) - 图索引(HNSW, NSG) 2. **可扩展性** - 支持分布式架构,适应十亿级向量规模(如Elasticsearch + Faiss扩展)。 3. **多模态支持** - 统一处理文本、图像、视频等不同模态的向量化数据。 --- ### 三、**主流向量数据库对比** | 名称 | 特点 | 适用场景 | |------|------|----------| | **Milvus** | 开源、云原生,支持多种索引算法 | 大规模AI应用 | | **Pinecone** | 全托管服务,低延迟 | 企业级SaaS需求 | | **Weaviate** | 内置NLP模型,支持语义检索 | 知识图谱、语义搜索 | | **Qdrant** | Rust开发,高性能 | 实时推荐系统 | | **Faiss**(库) | Meta开源,需结合数据库使用 | 研究与小规模部署 | --- ### 四、**典型应用场景** 1. **推荐系统** - 通过用户行为向量匹配相似商品(例:电商平台)。 2. **自然语言处理** - 语义搜索:将问题向量与知识库匹配(例:ChatGPT的长期记忆)。 3. **图像/视频检索** - 以图搜图:提取特征向量比对(例:Google Images)。 4. **异常检测** - 对比新数据与历史正常数据向量的偏离程度。 --- ### 五、**使用指南** #### 步骤1:数据向量化 - 使用预训练模型(如ResNet-50提取图像特征,Sentence-BERT生成文本嵌入)。 ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('paraphrase-MiniLM-L6-v2') vectors = model.encode(["向量数据库指南", "什么是ANN算法?"]) ``` #### 步骤2:选择数据库与索引 - 根据数据规模选择索引(例:HNSW适用于高召回率场景)。 ```python # 使用Milvus创建索引 from pymilvus import Collection, FieldSchema, DataType collection.create_index(field_name="embedding", index_params={ "index_type": "HNSW", "metric_type": "L2", "params": {"M": 16, "efConstruction": 200} }) ``` #### 步骤3:查询优化 - **权衡精度与速度**:调整`efSearch`参数(值越大精度越高,速度越慢)。 - **过滤条件**:结合元数据筛选(如时间范围+向量相似度)。 --- ### 六、**挑战与解决方案** | 挑战 | 解决方案 | |------|----------| | 高维数据计算成本高 | 使用降维技术(PCA, UMAP) | | 数据更新频繁 | 选择支持动态更新的数据库(如Milvus 2.0) | | 多租户隔离 | 云服务分片(Pinecone专用Pod) | --- ### 七、**学习资源推荐** 1. **开源项目** - [Milvus文档](https://milvus.io/docs) - [Faiss教程](https://github.com/facebookresearch/faiss/wiki) 2. **书籍** - 《Vector Databases: A Technical Introduction》(O'Reilly) 3. **在线课程** - Coursera《Approximate Nearest Neighbor Search with Vector Databases》 --- 如需进一步探讨具体工具或场景,可提供更多上下文!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大禹智库

大禹智库——河南第一民间智库

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值