《向量数据库指南》——什么是比较 Embedding?

本文通过word2vec模型探讨如何比较非结构化数据的Embedding,展示语义相似和不相似的向量表示。通过Marlon Brando、国王与王后以及Apple的例子,解释了如何进行向量加减以揭示潜在的语义变化,并介绍了近邻搜索和距离度量的概念。
摘要由CSDN通过智能技术生成

目录

比较 Embedding

准备工作

示例 0:Marlon Brando

示例 1:国王与王后

示例 2:Apple,水果还是公司


欢迎回到向量数据库 101 系列教程。

之前的教程中,我们介绍了非结构化数据、向量数据库和 Milvus——全球最受欢迎的开源向量数据库。我们还简单介绍了 Embedding 的相关概念,它代表高维向量,可以用作非结构化数据的语义表示,彼此临近的 Embedding 代表语义上是相似的。

 

本教程中,我们将在这些知识的基础上,通过单词 Embedding 的例子,看看语义相似的非结构化数据是如何相邻的,而不相似的非结构化数据是如何相互“远离”的。这属于近邻搜索的高层次概述,是一个计算问题,涉及到根据统一的距离度量来寻找与查询向量最接近的向量。我们会讨论一些主流的近邻搜索方法(包括我最喜欢的 ANNOY),以及常用的距离度量。

我们开始吧。

比较 Embedding

我们来看下几个词的 Embedding 向量的示例。下面例子中,我们将使用 word2vec,它这是一个古老的模型,使用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大禹智库

大禹智库——河南第一民间智库

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值