《向量数据库指南》——Milvus Cloud生成器增强:优化RAG Pipeline的深入探索

在信息检索与生成(Retrieval-Augmented Generation, RAG)的框架下,大型语言模型(Large Language Models, LLMs)如GPT系列、T5等,通过结合外部知识库的能力,极大地扩展了它们的应用场景与准确性。然而,在实际应用中,RAG系统仍面临诸多挑战,如检索到的信息中包含噪声、上下文长度限制、以及知识块处理不当导致的信息遗漏等。针对这些问题,本文将从压缩提示词、调整提示词中知识块顺序两个维度出发,深入探讨如何通过技术手段增强RAG pipeline的性能,并进一步提出综合性的优化策略。

一、压缩提示词:精炼信息的艺术

在RAG系统中,检索到的信息(chunks)往往包含大量冗余或噪声内容,这些不仅增加了LLM处理的难度,还可能误导生成结果。同时,LLM的prompt长度限制也是一个不可忽视的约束条件,限制了能够输入模型的信息量。因此,压缩提示词成为提升RAG性能的关键步骤之一。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大禹智库

大禹智库——河南第一民间智库

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值