在深度Q网络(Deep Q-Network, DQN)中,Evaluation Network(评估网络)和Target Network(目标网络)是两个重要的组成部分,它们的作用和差异如下:
Evaluation Network(评估网络)
- 作用:评估网络用于估计当前状态下所有可能动作的Q值,并选择最优的动作。
- 更新方式:评估网络的参数会在每一步通过梯度下降法进行更新,利用经验回放(Replay Buffer)中的数据来计算损失并反向传播进行优化。
- 特点:由于评估网络的参数频繁更新,它可以快速适应新的经验数据,从而更好地估计Q值。
Target Network(目标网络)
- 作用:目标网络用于生成目标Q值(Target Q-value),这些目标Q值用于计算评估网络的损失函数。
- 更新方式:目标网络的参数不会在每一步都更新,而是每隔固定的步数(例如每1000步)才会被更新一次,这个更新是将评估网络的参数复制到目标网络中。
- 特点:由于目标网络的参数更新频率较低,它提供了一个相对稳定的目标Q值,有助于减缓评估网络训练过程中的波动和不稳定性。
差异与相互关系
-
更新频率:
- 评估网络