关于概率的一点东西ch0

概率公理

这里我们直接照抄中文维基百科的中文词条 概率公理

假设我们有一个基础集 Ω \Omega Ω ,其子集的集合 F \mathcal {F} F σ \sigma σ代数,和一个给 F \mathcal {F} F的元素指定一个实数的函数 P P P F \mathfrak {F} F 的元素是 Ω \Omega Ω 的子集,称为“事件”。

第一公理(非负性)

对于任意一个集合 A ∈ F A \in \mathcal {F} AF, 我们有 P ( A ) ≥ 0 P(A) \geq 0 P(A)0
即,任一事件的概率都可以用 0 到 1区间(包含0与1)上的一个实数来表示。

第二公理(归一化)

P ( Ω ) = 1 P(\Omega )=1 P(Ω)=1
即,整体样本集合中的某个基本事件发生的概率为1。更加明确地说,在集合 Ω \Omega Ω 之外已经不存在基本事件了。

这在一些错误的概率计算中经常被小看;如果你不能准确地定义整个样本集合,那么任意子集的概率也不可能被定义。

第三公理(可加性)

任意两两不相交事件 E 1 , E 2 , . . . E_{1},E_{2},... E1,E2,...可数序列满足 P ( E 1 ∪ E 2 ∪ ⋯   ) = ∑ P ( E i ) P(E_{1}\cup E_{2}\cup \cdots )=\sum P(E_{i}) P(E1E2)=P(Ei)
即,不相交子集的并的事件集合的概率为那些子集的概率的和。这也被称为是 σ \sigma σ可加性。如果存在子集间的重叠,这一关系不成立。

相关概念

幂集

数学上,给定集合 S S S,其幂集 P ( S ) {\mathcal{P}}(S) P(S)(或作 2 S 2^S 2S )是以 S S S 的全部子集为元素的集合。以符号表示即为:
P ( S ) : = { U ∣ U ⊆ S } {P}(S):=\{U|U\subseteq S\} P(S):={ UUS}
举个例子,若 S S S是集合 { a , b , c } \{a,b,c\} { a,b,c},则 S S S的全部子集如下:

  • ∅ \varnothing (空集)
  • { a } \{a\} { a}
  • { b } \{b\} { b}
  • { c } \{c\} { c}
  • { a , b } \{a,b\} { a,b}
  • { a , c } \{a,c\} { a,c}
  • { b , c } \{b,c\} { b,c}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值