不相关的正态分布随机变量也不一定就独立

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qiongyu0422/article/details/83716661

素材主要来自英文维基百科词条Normally distributed and uncorrelated does not imply independent
我们直接举个例子吧。假设XX服从正态分布,WW是一个Rademacher distribution的随机变量,其取值在集合{1,1}\{1,-1\}中,且概率均为1/2。令Y=WXY=WX。关于YY的分布,我们有
FY(y)=P(Yy)=P(XyW=1)P(W=1)+P(XyW=1)P(W=1)=12[FX(y)+1FX(y)]\begin{aligned} F_Y(y) &= P(Y\leq y) \\ &= P(X\leq y|W=1)P(W=1) + P(X\geq -y|W=-1)P(W=-1) \\ &= \frac{1}{2}[ F_X(y) + 1-F_X(-y)] \end{aligned}
由于正态分布的对称性,我们有FX(y)=1FX(y)F_X(y) = 1-F_X(-y)。于是,我们有
FY(y)=FX(y)\begin{aligned} F_Y(y) = F_X(y) \end{aligned}
重要结论即为YY为正态分布。再考察XXYY的线性相关性,其协方差为
COV(X,Y)=E[XY]EXEY=E[XWX]0=E[X2W]=E[X2]E[W]=0\begin{aligned} COV(X,Y)&=\mathbb{E}[XY]- \mathbb{E}X\mathbb{E}Y \\ &=\mathbb{E}[XWX] - 0 \\ & = \mathbb{E}[X^2W] = \mathbb{E}[X^2] \mathbb{E}[W] =0 \end{aligned}
由此可见,XXYY线性不相关。
但是显然,我们有X=Y|X|=|Y|,即XXYY不独立。因此,XXYY就是一个很好的例子,证明不相关的正态分布随机变量也不一定就独立

展开阅读全文

随机变量

05-06

<span style="color:#666666;font-size:14px;background-color:#FFFFFF;">这是一门简单易懂的概率论课程!</span><br />rn<br />rn<span style="color:#666666;font-size:14px;background-color:#FFFFFF;">看教材学概率论实在是看不懂,教材编写者一般会认为教材有老师来讲解,所以自学教材会备受打击。</span><br />rn<br />rn<span style="color:#666666;font-size:14px;background-color:#FFFFFF;">本课程最大特色就是&nbsp;简单易懂,&nbsp;“简单易懂”意味着我会用简单的语言,你容易听懂的语言教你概率知识,而不是让你越听越晕。</span><br />rn<br />rn<span style="color:#666666;font-size:14px;background-color:#FFFFFF;">没有概率论就没有统计学,也基本上就不存在机器学习了,从而人工智能也不会有今天这样的繁荣发展。如果要从事数据科学行业,不懂概率论或者对概率论一知半解,基本上都要回过头重新学习概率论,因为吃不透概率论就吃不透算法原理,也就只能永远半吊子,在数据科学行业半吊子那基本上就没有你的位置了。</span><br />rn<br />rn<span style="color:#666666;font-size:14px;background-color:#FFFFFF;">各位,还是沉下心来老老实实的把概率论认真的学好吧!别想着速成,速成只会浪费你更多的时间!当然了,找到一个好老师教你,的确可以让你比别人更快的学会学好,比如我的这门概率论教程!</span><br />rn<br />rn<p>rn <br />rn</p>

没有更多推荐了,返回首页