标签(空格分隔): 微积分
数学分析笔记-菲赫金哥尔茨-第一卷-极限论
1.整序变量及其极限
22.变量、整序变量。
- 整序变量的定义(序列,估计数列,级数…也行)。
- 整序变量的给定(给定通项公式,或者给定某种规则使得整个序列可以逐一算出)
23.整序变量的极限。
对于每一个正数 ϵ ,不论它怎样小,恒有序号 N ,使在
24.无穷小量。极限为零的整序变量 xn 称为无穷小量,或简称无穷小。
- 事实上,无穷小数这样一个变量,它仅在自己变化过程中,可以变为小于(绝对值小于)任意选取的数 ϵ 。
- 整序变量 xn 以常数 a 为极限的必要而且充分的条件是:他们的差
an=xn−a 是无穷小。 - 若常数 a 与整序变量
xn 的差是无穷小量,则 a 称为整序变量xn 的极限。
25.例题。
通过例1),2),和3)看出:变量的值是否均在极限值的一方;变量是否每一步都向其极限接近,变量是否能达到极限,即是否具有等于极限的数值;这些都不重要。重要的仅仅是定义当中说的:变量在项数充分远时,与极限之差是要任意小的。
如果只是要证明极限的存在,则这种场合我们总不关心于 Nϵ 的最下可能的数值。只需保证给出“极限定义”的不等式成立即可。至于从哪一项开始,位置远些或近些,可以不去管它。
具有有限和的级数就是收敛的;否则,就是发散的。(这里的收敛于发散是关于“级数的定义”,本初关于收敛于发散的定义和哈工大工科数学分析中的定义不一致)。
25.关于有极限的整序变量的一些定理。
1°. 若整序变量 xn 趋于极限a,又a>p(a< q),则一切变量的数值,从某项开始,亦将>p(< q).
2°. 若整序变量 xn 趋于极限a > 0(< 0),则变量本身从某项开始亦必有 xn >0 ( < 0)。
3°.若整序变量 xn 趋于异于零的极限a,则必有充分远的 xn 的值,其绝对值得超过某正数r: |xn|>r>0 (n>N).
4°.另一方面,若整序变量 xn 有极限a,则 xn 必定是有界的,意即,它的一切值在绝对值上不超过某一有限的界: |xn|≤M (M=常数;n=1,2, …).
5°. 整序变量 xn 不能同时趋于两个相异的极限。
附注 I. xn 为有界变量的定义也(另一种定义通过绝对值)可以用不等式 k≤xn≤g (n=1,2,…)来表示,式中k及g为两个有限的数。
附注 II. 命题4°不能逆述。
27. 无穷大量。
无穷大量,在某种意义上是与无穷销量相反的。
若整序变量 xn ,由某项开始,其绝对值变成且保持着大于与现制定的任意大数 E>0 , |xn|>E (当 n>NE 时), xn 便称为无穷大。
如同在无穷小的情形下,这里亦需要着重指出,无穷大量的任一个别数值都不能当做“大量”看待。我们这里所讨论的是这样的变量,它仅在本身改变的过程中可以大于任意选取的数 E 。
若整序变量