数学分析笔记-菲赫金哥尔茨-第一卷-极限论

本文详细介绍了菲赫金哥尔茨的数学分析第一卷中的极限论,涵盖整序变量、无穷小量、极限定理、单调变量等内容,通过例题解析极限的性质和应用。
摘要由CSDN通过智能技术生成

标签(空格分隔): 微积分


数学分析笔记-菲赫金哥尔茨-第一卷-极限论

1.整序变量及其极限

22.变量、整序变量。

  • 整序变量的定义(序列,估计数列,级数…也行)。
  • 整序变量的给定(给定通项公式,或者给定某种规则使得整个序列可以逐一算出)

23.整序变量的极限。

对于每一个正数 ϵ ,不论它怎样小,恒有序号 N ,使在 n>N 时,一切 xn 的值满足不等式 |xna|<ϵ ,则常数 a 称为整序变量 x=xn 的极限。

24.无穷小量。极限为零的整序变量 xn 称为无穷小量,或简称无穷小。

  • 事实上,无穷小数这样一个变量,它仅在自己变化过程中,可以变为小于(绝对值小于)任意选取的数 ϵ
  • 整序变量 xn 以常数 a 为极限的必要而且充分的条件是:他们的差 an=xna 是无穷小。
  • 若常数 a 与整序变量 xn 的差是无穷小量,则 a 称为整序变量 xn 的极限。

25.例题。

  • 通过例1),2),和3)看出:变量的值是否均在极限值的一方;变量是否每一步都向其极限接近,变量是否能达到极限,即是否具有等于极限的数值;这些都不重要。重要的仅仅是定义当中说的:变量在项数充分远时,与极限之差是要任意小的。

  • 如果只是要证明极限的存在,则这种场合我们总不关心于 Nϵ 的最下可能的数值。只需保证给出“极限定义”的不等式成立即可。至于从哪一项开始,位置远些或近些,可以不去管它。

  • 具有有限和的级数就是收敛的;否则,就是发散的。(这里的收敛于发散是关于“级数的定义”,本初关于收敛于发散的定义和哈工大工科数学分析中的定义不一致)。

25.关于有极限的整序变量的一些定理。

1°. 若整序变量 xn 趋于极限a,又a>p(a< q),则一切变量的数值,从某项开始,亦将>p(< q).

2°. 若整序变量 xn 趋于极限a > 0(< 0),则变量本身从某项开始亦必有 xn >0 ( < 0)。

3°.若整序变量 xn 趋于异于零的极限a,则必有充分远的 xn 的值,其绝对值得超过某正数r: |xn|>r>0 (n>N).

4°.另一方面,若整序变量 xn 有极限a,则 xn 必定是有界的,意即,它的一切值在绝对值上不超过某一有限的界: |xn|M (M=常数;n=1,2, …).

5°. 整序变量 xn 不能同时趋于两个相异的极限。

附注 I. xn 为有界变量的定义也(另一种定义通过绝对值)可以用不等式 kxng (n=1,2,…)来表示,式中k及g为两个有限的数。

附注 II. 命题4°不能逆述。

27. 无穷大量。

无穷大量,在某种意义上是与无穷销量相反的。
若整序变量 xn ,由某项开始,其绝对值变成且保持着大于与现制定的任意大数 E>0 |xn|>E (当 n>NE 时), xn 便称为无穷大。

如同在无穷小的情形下,这里亦需要着重指出,无穷大量的任一个别数值都不能当做“大量”看待。我们这里所讨论的是这样的变量,它仅在本身改变的过程中可以大于任意选取的数 E

若整序变量 xn 成为无穷大,并且(至少在充分大的n时)保持着一定的符号(+或-),这时,按照符号的正或负,我们说 xn 有极限 +

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值