随机过程性质的定义

本文介绍了随机过程的基础知识,包括概率分布、一阶和二阶分布函数,以及均值、方差、自相关和自协方差函数。重点讨论了平稳性,分为一阶、二阶平稳过程以及广义和严平稳过程的概念,强调了统计特性的不变性对随机过程的重要性。
摘要由CSDN通过智能技术生成

随机过程的基本性质

随机过程的概率分布

在任何一个时间 t t t,随机过程 X ( t ) \mathbf{X}(t) X(t)都是一个随机变量,我们用如下分布来表示
F ( x , t ) = P { X ( t ) ≤ x } F(x,t) = P\{ \mathbf{X}(t) \leq x \} F(x,t)=P{ X(t)x}
这个函数是与时间 t t t相关的,它表示,综合考虑所有可能的 ζ \zeta ζ时,随机过程的一个样本在 t t t时刻的取值 X ( t , ζ ) \mathbf{X}(t,\zeta) X(t,ζ)不超过 x x x的概率。 F ( x , t ) F(x,t) F(x,t)是一阶分布函数,对应的一阶密度函数则为
f ( x , t ) = ∂ F ( x , t ) ∂ x f(x, t) = \frac{\partial F(x,t)}{\partial x} f(x,t)=xF(x,t)

用频率近似的解释
如果一个实验重复了 n n n次数,那么我们会观测到 n n n个函数 X ( t , ζ i ) \mathbf{X}(t,\zeta_i) X(t,ζi)。用 n t ( x ) n_t(x) nt(x)表示在所有的函数中, t t t时刻取值不大于 x x x的个数,那么就有
F ( x , t ) ≈ n t ( x ) n F(x,t) \approx \frac{n_t(x)}{n} F(x,t)nnt(x)

类似的,二阶的分布函数为:
F ( x 1 , x 2 ; t 1 , t 2 ) = P { X ( t 1 ) ≤ x 1 , X ( t 2 ) ≤ x 2 } F(x_1,x_2; t_1, t_2) = P\{ \mathbf{X}(t_1) \leq x_1, \mathbf{X}(t_2) \leq x_2\} F(x1,x2;t1,t2)=P{ X(t1)x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值