随机过程的基本性质
随机过程的概率分布
在任何一个时间 t t t,随机过程 X ( t ) \mathbf{X}(t) X(t)都是一个随机变量,我们用如下分布来表示
F ( x , t ) = P { X ( t ) ≤ x } F(x,t) = P\{ \mathbf{X}(t) \leq x \} F(x,t)=P{
X(t)≤x}
这个函数是与时间 t t t相关的,它表示,综合考虑所有可能的 ζ \zeta ζ时,随机过程的一个样本在 t t t时刻的取值 X ( t , ζ ) \mathbf{X}(t,\zeta) X(t,ζ)不超过 x x x的概率。 F ( x , t ) F(x,t) F(x,t)是一阶分布函数,对应的一阶密度函数则为
f ( x , t ) = ∂ F ( x , t ) ∂ x f(x, t) = \frac{\partial F(x,t)}{\partial x} f(x,t)=∂x∂F(x,t)
用频率近似的解释
如果一个实验重复了 n n n次数,那么我们会观测到 n n n个函数 X ( t , ζ i ) \mathbf{X}(t,\zeta_i) X(t,ζi)。用 n t ( x ) n_t(x) nt(x)表示在所有的函数中, t t t时刻取值不大于 x x x的个数,那么就有
F ( x , t ) ≈ n t ( x ) n F(x,t) \approx \frac{n_t(x)}{n} F(x,t)≈nnt(x)
类似的,二阶的分布函数为:
F ( x 1 , x 2 ; t 1 , t 2 ) = P { X ( t 1 ) ≤ x 1 , X ( t 2 ) ≤ x 2 } F(x_1,x_2; t_1, t_2) = P\{ \mathbf{X}(t_1) \leq x_1, \mathbf{X}(t_2) \leq x_2\} F(x1,x2;t1,t2)=P{
X(t1)≤x