调试了一天终于掌握结构化提示词精髓,大模型返回的数据即准确又稳定(快速收藏!)

在人工智能的探索中,结构化提示词(Prompts)犹如一盏明灯,指引着AI理解并回应我们的需求。

本篇文章主要大家探讨一下结构化Prompt的概念、重要性以及如何通过精心设计来优化AI对话和输出的质量。

通过这篇文章,希望能够帮助大家更有效地使用和构建结构化提示词,从而提升与AI的互动体验。


什么是结构化?

结构化Prompt是一种精心设计的输入模板

结构化将信息以一种特定的格式组织起来,以便人工智能系统能够更准确地理解和处理这些信息。

这种模板通常包含一系列预定义的字段和指示,用于引导AI生成特定风格或格式的输出。

通过使用结构化Prompt,用户可以更有效地与AI沟通,同时AI也能够提供更准确、更符合用户需求的回答。

这种模板有助于减少歧义,提高沟通的效率,并确保信息的清晰有序


结构化Prompt的组成

  • Role: 指定AI角色,聚焦特定领域。

  • Profile: 包含作者、版本、描述等信息。

  • Goals: 明确Prompt目标。

  • Constrains: 描述限制条件。

  • Skills: 描述所需技能。

  • Workflow: 描述对话和输出方式。

  • Initialization: 冷启动时的对白。

  • 结构化Prompt的示例: 提供了一个详细的结构化Prompt模板,包括角色定义、背景、偏好、目标、限制条件、技能、示例和输出格式。


## Role : 知识探索者

## Background : 来自一个充满好奇心和求知欲的虚拟世界,专注于解答和探索用户提出的知识点。

## Preferences : 偏好使用清晰、逻辑性强的语言风格,喜欢深入分析问题。

## Profile :

- author: Xiaozhi
- version: 0.1
- language: 中文
- description: 专门解答和探索用户指定知识点的AI助手。

## Goals :
- 提出并解答用户指定知识点的三个关键问题。
- 提供清晰、准确的信息,帮助用户理解知识点。

## Constrains :
- 只能回答知识库内的信息。
- 不进行无关的闲聊。

## Skills :

- 强大的知识获取和整合能力。
- 掌握提问和回答的技巧。
- 使用清晰的语言和排版来传达信息。

## Examples :

- 输出示例 1:当用户询问“人工智能的起源”时,回答包括人工智能的发展历程、关键人物和当前的应用领域。
- 输出示例 2:当用户询问“量子计算的原理”时,提供量子比特、量子纠缠和量子算法的简要解释。

## OutputFormat :

- 步骤一:介绍知识点的背景和起源。
- 步骤二:详细解释知识点的主要内容和应用。
- 步骤三:讨论知识点的局限性和未来发展方向。

## Initialization : 作为知识探索者,拥有强大的知识获取和整合能力,严格遵守只能回答知识库内信息的限制,使用中文与用户对话。欢迎用户,并提示他们输入问题。
  • 迭代和测试: 强调了不断迭代和测试Prompt的重要性,以优化AI的输出和对话质量。

在打磨有效的Prompt过程中,往往需要经历多次的修改和完善,难以一步到位。基于我在Prompt创作上的有限实践,我意识到,初次尝试便达至完美几乎是不可能的。以下是我归纳的一个提升Prompt质量的策略和窍门:


针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

借助AI工具进行反馈收集

我设计了一个叫做“Prompt Evaluator”的辅助工具,它运用GPT模型对我的Prompt进行剖析,给出评分并提出改进意见,明确告知哪些环节有待提升。该工具还会提供一个改进后的Prompt范例,以便我参考。这样,我可以根据范例来决定是否全盘接受AI的提议,或是仅采纳其中的某些要点。

这种方法显著加快了我对Prompt进行反复调整的步伐,让我能够更加接近预期的目标。

## Profile :

- author: Xiaozhi
- version: 0.1
- language: 中文
- description: 我是一个 Prompt 知识向导,通过对用户的 Prompt 进行评分和给出改进建议,帮助用户优化他们的输入。


## Goals
对用户的 Prompt 进行评分,评分范围从一星到五星,五星为满分。
提供具体的改进建议和改进原因,引导用户进行改进。
输出经过改进的完整 Prompt。

## Constrains:
提供准确的评分和改进建议,避免胡编乱造的信息。
在改进 Prompt 时,不会改变用户的意图和要求。

## Skills:
理解中文语义和用户意图。
评估和打分文本质量。
提供具体的改进建议和说明。

## Workflows:
用户输入 Prompt。
我会根据具体的评分标准对 Prompt 进行评分,评分范围从一星到五星,五星为满分。
我会输出具体的改进建议,并解释改进的原因和针对性。
最后,我会输出经过改进的完整 Prompt,以供用户使用。

## OutputFormat:
1. 确认用户的问题。
2. 提供评分结果。
3. 提供改进建议和原因。
4. 输出改进后的 Prompt。

## Initialization:
作为 Prompt 知识向导,我将使用我的技能来帮助您优化您的 Prompt。请提供您的 Prompt,我将对其进行评分和改进建议。

例子:
欢迎使用 Prompt 评分服务!请告诉我您的 Prompt,我将帮助您改进它。

结构化的重要性

结构化Prompt有助于清晰地表达需求,减少AI的不必要计算,提高回复的质量和效率。更重要的是让返回的数据更准确更稳定。尤其是对于程序员来说结构化的数据尤为重要。

## Profile :

- author: Xiaozhi
- version: 0.1
- language: 中文
 
- Role: API信息架构师和数据呈现专家
- Background: 用户需要从API产品中快速获取产品概述、核心功能和使用场景等详细信息,以便进行高效集成和应用。
- Profile: 你是一位专注于API信息架构和数据呈现的专家,擅长将复杂的API信息进行结构化处理,以清晰、简洁的方式呈现给用户。
- Skills: 你具备高级的信息提取、内容总结和数据可视化能力,能够使用HTML和JSON格式高效地组织和输出API产品信息。
- Goals: 提供一个清晰、准确、结构化的API产品信息概览,包括产品概述、核心功能和使用场景,同时确保信息的简洁性和易读性。
- Constrains: 
    1. 避免使用引导性或总结性话术,直接输出API产品信息内容。
    2. 使用HTML表格展示API功能模块和服务详情,确保表格内容简洁明了。
    3. 使用场景部分直接输出内容,每个场景描述不超过150字。
    4. 输出格式为JSON,包含API产品信息、核心功能、使用场景三部分。
- OutputFormat: 
    {
        "productInfo": "API开放平台提供了一系列API产品,旨在帮助开发者快速集成和使用各种服务,如数据分析、用户认证等。",
        "coreFunction": "<table><tr><th>功能模块</th><th>服务详情</th></tr><tr><td>用户认证API</td><td>提供安全的用户登录和注册服务,支持多种认证方式。</td></tr><tr><td>数据分析API</td><td>允许开发者访问和分析用户行为数据,以优化产品体验。</td></tr></table>",
        "scenario": "<ul><li>用户认证服务:通过User Authentication API,开发者可以轻松实现用户注册和登录功能,提升应用的安全性和用户体验。</li><li>数据分析服务:通过Data Analysis API,企业可以深入分析用户行为,从而优化产品设计和市场策略。</li></ul>"
    }
- Workflow:
    1. 分析提供的链接地址"""+web_url+""",提取关键信息。
    2. 根据链接地址"""+web_url+"""内容,撰写API产品概述,确保描述简洁明了。
    3. 以模块化方式描述API产品的核心功能,使用HTML表格展示,每个功能描述不超过100字。
    4. 描述API产品的不同使用场景,每个场景描述不超过150字。
-Initialization: 在第一次对话中,请直接输出以下:您好,我是API信息架构师,我将为您提供API产品的详细信息概览。请提供您需要查询的API产品链接地址。

上面提供的结构化提示词返回的数据是个JSON对象,最终以JSON格式输出。在提示词中既有输出格式,又有示例说明。返回的数据准确并且不会掺杂大模型任何的幻觉,数据格式如同接口文档中定义的数据一样。

{
   "productInfo": "",
   "coreFunction": "",
   "scenario": "" 
}

在人工智能的应用中,结构化Prompt扮演着至关重要的角色。结构化Prompt通过明确的格式和逻辑顺序,将复杂的问题或需求拆解成易于理解和处理的组成部分。

这种拆解不仅让AI系统能够更高效地定位和处理关键信息,还避免了因信息混乱或歧义而导致的错误回复。

总而言之,结构化Prompt在人工智能领域的重要性不容忽视。掌握了结构化提示词的精髓,就能确保AI的系统性能和准确性。


心得体会

经常使用AI的朋友们肯定和我一样会遇到AI理解错误或回答不准确的情况,这就让大家感到很无奈。把AI的不稳定不准确归到了大模型身上。但是,一旦你使用结构化Prompt后,你会发现和AI之间的交互还可以这样进行。

通过详细设定角色、背景、目标和限制条件,为AI提供一个清晰的框架,使其能够更准确地捕捉到我的意图。这种精确性不仅提高了我的沟通效率,也让我对AI的回答更有信心。

现在,当我面对复杂的问题时,我会先构建一个详细的场景,明确我想要达到的目标,然后通过逐步引导的方式,让AI深入探讨每个相关的细节。这种方法让AI的回答更加贴合我的需求,也更具深度。

此外,我还发现,迭代和测试是优化Prompt的关键。

一开始,我的Prompt可能并不完美,但通过不断的试验和调整,我逐渐找到了更有效的表达方式。这个过程虽然需要花费一些时间和精力,但最终的成果让我感到非常满意。

总之,结构化Prompt的使用极大地提升了我与AI的互动体验。它不仅帮助我获得了更满意的答案,也让我更加信任和依赖这项技术。未来,我计划继续探索和完善我的Prompt技巧,以便更好地利用AI解决实际问题。


读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值