使用`scipy.stats.wasserstein_distance`来计算两个一维分布之间的Earth Mover‘s Distance (EMD)距离

本文介绍了如何在Python中使用scipy库的wasserstein_distance函数计算两个一维概率分布之间的EarthMoversDistance(EMD),并给出了使用示例,强调了该函数在衡量分布间差异的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

在Python中,计算Earth Mover’s Distance (EMD)通常使用scipy库中的scipy.stats.wasserstein_distance函数,该函数计算的是Wasserstein距离,它与EMD非常相似,都是用来衡量两个分布之间的距离。

以下是一个简单的Python程序例子,展示了如何使用scipy.stats.wasserstein_distance来计算两个一维分布之间的距离:

import numpy as np
from scipy.stats import wasserstein_distance

# 假设我们有两个一维分布,用numpy数组表示它们的概率质量函数
dist_a = np.array([0.1, 0.2, 0.7])  # 分布A
dist_b = np.array([0.3, 0.4, 0.3])  # 分布B

# 计算这两个分布之间的Wasserstein距离
emd = wasserstein_distance(dist_a, dist_b)

print(f"Earth Mover's Distance (Wasserstein distance) between the two distributions: {emd}")

其中,wasserstein_distance函数计算的是两个一维概率分布之间的距离,这两个分布应该是用概率质量函数或者累积分布函数来表示的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值