基于深度学习unet的息肉分割检测

基于U-Net的息肉分割检测工具介绍

息肉分割工具 Polyp

概述

结直肠癌在女性常见癌症中位列第二,在男性中位列第三,而息肉是此疾病的前兆病变。通过结肠镜检查发现并评估息肉对早期诊断至关重要,这将显著影响患者生存率。研究表明,结肠镜检查中息肉的漏诊率高达14%-30%(取决于息肉类型和大小)。因此,提升息肉检测能力对预防结直肠癌、改善患者预后具有关键意义。
在这里插入图片描述

本工具基于Kvasir-SEG数据集开发(该开源数据集包含胃肠道息肉图像及对应分割掩模,由经验丰富的胃肠病专家手动标注并验证),采用基于U-Net架构的深度学习模型,可自动从结肠镜图像中分割息肉,为医疗专业人员提供辅助诊断工具。生成的视觉分割掩模有助于优化初步诊断流程并支持治疗规划。

应用界面图示

Streamlit应用使用指南
  1. 访问工具
    通过浏览器打开Streamlit应用URL。

  2. 下载示例图像
    在应用首页点击"下载示例图像"链接获取测试样本。

  3. 上传图像
    使用文件上传器选择结肠镜图像(JPG/JPEG格式)。

  4. 处理图像
    点击"处理图像"按钮启动分割流程。

  5. 查看与下载结果
    分割掩模将与原图并列显示,支持下载包含所有结果的ZIP压缩包。

应用演示图示

在这里插入图片描述
在这里插入图片描述

技术亮点
  • 深度学习模型优化
    采用针对医学图像分割优化的U-Net架构,验证了AI模型在医疗诊断特定场景中的高效应用。

  • 数据预处理与增强
    通过图像缩放、归一化和数据增强的强化流程,提升模型对不同结肠镜图像的泛化能力。

  • Streamlit网页应用
    开发了支持批量处理的轻量化应用,结果可离线下载。模型安全存储于AWS S3云端并按需动态加载。

  • 探索性数据分析(EDA)
    通过详细EDA解析息肉特征,指导数据增强策略以提升检测精度。


安装部署

1. 克隆仓库


cd .\Polyp\

2. 配置虚拟环境

# 创建环境
python -m venv venv

# 激活环境(Windows)
.\venv\Scripts\activate

# 激活环境(macOS/Linux)
source venv/bin/activate

3. 安装依赖

pip install -r requirements.txt

模型训练

运行Streamlit应用前需确保已存在训练好的模型文件(model/unet.h5),或按以下方式训练:

本地训练

  • 确保计算资源充足
  • 按标准目录结构组织数据:
    new_data/
    ├── train/
    │   ├── images/      # 存放0001.jpg等原图
    │   └── masks/       # 存放0001.png等掩模
    ├── validation/      # 同train结构
    └── test/            # 同train结构
    
new_data/
│
├── train/
│   ├── images/
│   │   ├── 0001.jpg
│   │   ├── 0002.jpg
│   │   └── ...
│   │
│   └── masks/
│       ├── 0001.png
│       ├── 0002.png
│       └── ...
│
├── validation/
│   ├── images/
│   │   ├── 0008.jpg
│   │   ├── 0009.jpg
│   │   └── ...
│   │
│   └── masks/
│       ├── 0008.png
│       ├── 0009.png
│       └── ...
│
└── test/
    ├── images/
    │   ├── 0011.jpg
    │   ├── 0024.jpg
    │   └── ...
    │
    └── masks/
        ├── 0011.png
        ├── 0024.png
        └── ...
  • 运行Image preprocessing Data generator and Modeling.ipynb笔记本

Google Colab训练

  • 上传笔记本至Colab,适配数据路径
  • 利用GPU加速训练

注:自定义训练需配置AWS S3等云存储以便模型部署


启动Streamlit应用
streamlit run app.py

终端将生成可访问的网页URL。
在这里插入图片描述


格式说明:

  1. 保留Markdown二级标题结构(#####
  2. 技术术语(如U-Net/EDA)保持原命名
  3. 代码块/路径等保持原文格式
  4. 复杂长句拆分符合中文阅读习惯
  5. 关键操作步骤添加emoji符号增强可读性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值