车辆坐标系与世界坐标系中速度、加速度转换关系推导与分析

车辆坐标系与世界坐标系中速度、加速度转换关系推导与分析

  在不同的坐标系中,向量的大小和方向都是不变的,但是可以根据不同的坐标系将向量描述成不同的结果。

车身坐标系与大地坐标系速度转换

图1 车辆坐标系与世界坐标系速度转换

  已知 x − o − y x-o-y xoy为车身坐标系, e ⃗ x \vec{e}_x e x e ⃗ y \vec{e}_y e y分别为 x x x轴和 y y y轴方向的单位向量, θ \theta θ为车辆横摆角, θ ˙ \dot{\theta} θ˙为车辆横摆角速度; X − O − Y X-O-Y XOY为大地坐标系, e ⃗ X \vec{e}_X e X e ⃗ Y \vec{e}_Y e Y分别为 X X X轴和 Y Y Y轴方向的单位向量。

  依据单位向量的平方为1的原理,可以建立如下等式:
e ⃗ x 2 + e ⃗ y 2 = e ⃗ X 2 + e ⃗ Y 2 ( 1 ) \vec{e}_x^2 + \vec{e}_y^2 = \vec{e}_X^2 + \vec{e}_Y^2 \qquad(1) e x2+e y2=e X2+e Y21

  式(1)左右两边同时乘以 e ⃗ x \vec{e}_x e x,可得:
e ⃗ x ⋅ e ⃗ x ⋅ e ⃗ x + e ⃗ x ⋅ e ⃗ y ⋅ e ⃗ y = e ⃗ x ⋅ e ⃗ X ⋅ e ⃗ X + e ⃗ x ⋅ e ⃗ Y ⋅ e ⃗ Y ( 2 ) \vec{e}_x \cdot \vec{e}_x \cdot \vec{e}_x + \vec{e}_x \cdot \vec{e}_y \cdot \vec{e}_y = \vec{e}_x \cdot \vec{e}_X \cdot \vec{e}_X + \vec{e}_x \cdot \vec{e}_Y \cdot \vec{e}_Y \qquad(2) e xe xe x+e xe ye y=e xe Xe X+e xe Ye Y2

( e ⃗ x ⋅ e ⃗ x ) e ⃗ x + ( e ⃗ x ⋅ e ⃗ y ) e ⃗ y = ( e ⃗ x ⋅ e ⃗ X ) e ⃗ X + ( e ⃗ x ⋅ e ⃗ Y ) e ⃗ Y ( 3 ) (\vec{e}_x \cdot \vec{e}_x) \vec{e}_x + (\vec{e}_x \cdot \vec{e}_y) \vec{e}_y = (\vec{e}_x \cdot \vec{e}_X) \vec{e}_X + (\vec{e}_x \cdot \vec{e}_Y) \vec{e}_Y \qquad(3) (e xe x)e x+(e xe y)e y=(e xe X)e X+(e xe Y)e Y3

  根据图1可得向量点乘关系:
{ e ⃗ x ⋅ e ⃗ y = 0 e ⃗ X ⋅ e ⃗ Y = 0 e ⃗ x ⋅ e ⃗ X = cos ⁡ θ e ⃗ x ⋅ e ⃗ Y = cos ⁡ ( π / 2 − θ ) = sin ⁡ θ e ⃗ y ⋅ e ⃗ X = cos ⁡ ( π / 2 + θ ) = − sin ⁡ θ e ⃗ y ⋅ e ⃗ Y = cos ⁡ θ ; ( 4 ) \begin{cases} \vec{e}_x \cdot \vec{e}_y = 0 \\ \vec{e}_X \cdot \vec{e}_Y = 0 \\ \vec{e}_x \cdot \vec{e}_X = \cos \theta \\ \vec{e}_x \cdot \vec{e}_Y = \cos (\pi / 2 - \theta) = \sin \theta \\ \vec{e}_y \cdot \vec{e}_X = \cos (\pi / 2 + \theta) = -\sin \theta \\ \vec{e}_y \cdot \vec{e}_Y = \cos \theta ; \end{cases} \qquad(4) e xe y=0e Xe Y=0e xe X=cosθe xe Y=cos(π/2θ)=sinθe ye X=cos(π/2+θ)=sinθe ye Y=cosθ;4

  将式(4)带入式(3)可得:

e ⃗ x = cos ⁡ θ ⋅ e ⃗ X + sin ⁡ θ ⋅ e ⃗ Y ( 5 ) \vec{e}_x = \cos \theta \cdot \vec{e}_X + \sin \theta \cdot \vec{e}_Y \qquad(5) e x=cosθe X+sinθe Y5

  同理,可得:
{ ( e ⃗ x ⋅ e ⃗ x ) e ⃗ x + ( e ⃗ x ⋅ e ⃗ y ) e ⃗ y = ( e ⃗ x ⋅ e ⃗ X ) e ⃗ X + ( e ⃗ x ⋅ e ⃗ Y ) e ⃗ Y ( e ⃗ y ⋅ e ⃗ x ) e ⃗ x + ( e ⃗ y ⋅ e ⃗ y ) e ⃗ y = ( e ⃗ y ⋅ e ⃗ X ) e ⃗ X + ( e ⃗ y ⋅ e ⃗ Y ) e ⃗ Y ( 6 ) \begin{cases} (\vec{e}_x \cdot \vec{e}_x) \vec{e}_x + (\vec{e}_x \cdot \vec{e}_y) \vec{e}_y = (\vec{e}_x \cdot \vec{e}_X) \vec{e}_X + (\vec{e}_x \cdot \vec{e}_Y) \vec{e}_Y \\ (\vec{e}_y \cdot \vec{e}_x) \vec{e}_x + (\vec{e}_y \cdot \vec{e}_y) \vec{e}_y = (\vec{e}_y \cdot \vec{e}_X) \vec{e}_X + (\vec{e}_y \cdot \vec{e}_Y) \vec{e}_Y \end{cases} \qquad(6) {(e xe x)e x+(e xe y)e y=(e xe X)e X+(e xe Y)e Y(e ye x)e x+(e ye y)e y=(e ye X)e X+(e ye Y)e Y6

{ e ⃗ x = cos ⁡ θ ⋅ e ⃗ X + sin ⁡ θ ⋅ e ⃗ Y e ⃗ y = − sin ⁡ θ ⋅ e ⃗ X + cos ⁡ θ ⋅ e ⃗ Y ( 7 ) \begin{cases} \vec{e}_x = \cos \theta \cdot \vec{e}_X + \sin \theta \cdot \vec{e}_Y \\ \vec{e}_y = -\sin \theta \cdot \vec{e}_X + \cos \theta \cdot \vec{e}_Y \end{cases} \qquad(7) {e x=cosθe X+sinθe Ye y=sinθe X+cosθe Y7

{ ( e ⃗ X ⋅ e ⃗ x ) e ⃗ x + ( e ⃗ X ⋅ e ⃗ y ) e ⃗ y = ( e ⃗ X ⋅ e ⃗ X ) e ⃗ X + ( e ⃗ X ⋅ e ⃗ Y ) e ⃗ Y ( e ⃗ Y ⋅ e ⃗ x ) e ⃗ x + ( e ⃗ Y ⋅ e ⃗ y ) e ⃗ y = ( e ⃗ Y ⋅ e ⃗ X ) e ⃗ X + ( e ⃗ Y ⋅ e ⃗ Y ) e ⃗ Y ( 8 ) \begin{cases} (\vec{e}_X \cdot \vec{e}_x) \vec{e}_x + (\vec{e}_X \cdot \vec{e}_y) \vec{e}_y = (\vec{e}_X \cdot \vec{e}_X) \vec{e}_X + (\vec{e}_X \cdot \vec{e}_Y) \vec{e}_Y \\ (\vec{e}_Y \cdot \vec{e}_x) \vec{e}_x + (\vec{e}_Y \cdot \vec{e}_y) \vec{e}_y = (\vec{e}_Y \cdot \vec{e}_X) \vec{e}_X + (\vec{e}_Y \cdot \vec{e}_Y) \vec{e}_Y \end{cases} \qquad(8) {(e Xe x)e x+(e Xe y)e y=(e Xe X)e X+(e Xe Y)e Y(e Ye x)e x+(e Ye y)e y=(e Ye X)e X+(e Ye Y)e Y8

{ e ⃗ X = cos ⁡ θ ⋅ e ⃗ x − sin ⁡ θ ⋅ e ⃗ y e ⃗ Y = sin ⁡ θ ⋅ e ⃗ x + cos ⁡ θ ⋅ e ⃗ y ( 9 ) \begin{cases} \vec{e}_X = \cos \theta \cdot \vec{e}_x - \sin \theta \cdot \vec{e}_y \\ \vec{e}_Y = \sin \theta \cdot \vec{e}_x + \cos \theta \cdot \vec{e}_y \end{cases} \qquad(9) {e X=cosθe xsinθe ye Y=sinθe x+cosθe y9

  根据图1可以建立:
v ⃗ = v X ⋅ e ⃗ X + v Y ⋅ e ⃗ Y = v x ⋅ e ⃗ x + v y ⋅ e ⃗ y ( 10 ) \vec{v} = v_X \cdot \vec{e}_X + v_Y \cdot \vec{e}_Y = v_x \cdot \vec{e}_x + v_y \cdot \vec{e}_y \qquad(10) v =vXe X+vYe Y=vxe x+vye y10

  将式(7)代入式(10)中可得:
v X ⋅ e ⃗ X + v Y ⋅ e ⃗ Y = ( v x cos ⁡ θ − v y sin ⁡ θ ) e ⃗ X + ( v x sin ⁡ θ + v y cos ⁡ θ ) e ⃗ Y ( 11 ) v_X \cdot \vec{e}_X + v_Y \cdot \vec{e}_Y = (v_x \cos \theta - v_y \sin \theta) \vec{e}_X + (v_x \sin \theta + v_y \cos \theta) \vec{e}_Y \qquad(11) vXe X+vYe Y=(vxcosθvysinθ)e X+(vxsinθ+vycosθ)e Y11

  根据等式两边对应向量乘数相等可得:
{ v X = v x cos ⁡ θ − v y sin ⁡ θ v Y = v x sin ⁡ θ + v y cos ⁡ θ ( 12 ) \begin{cases} v_X = v_x \cos \theta - v_y \sin \theta \\ v_Y = v_x \sin \theta + v_y \cos \theta \end{cases} \qquad(12) {vX=vxcosθvysinθvY=vxsinθ+vycosθ12

  同理,将式(9)代入式(10)中可得:
{ v x = v X cos ⁡ θ + v Y sin ⁡ θ v y = − v X sin ⁡ θ + v Y cos ⁡ θ ( 13 ) \begin{cases} v_x = v_X \cos \theta + v_Y \sin \theta \\ v_y = -v_X \sin \theta + v_Y \cos \theta \end{cases} \qquad(13) {vx=vXcosθ+vYsinθvy=vXsinθ+vYcosθ13

车身坐标系与大地坐标系速度转换

图2 车辆坐标系与世界坐标系加速度转换

  根据图2可以建立:
a ⃗ = a X ⋅ e ⃗ X + a Y ⋅ e ⃗ Y = a x ⋅ e ⃗ x + a y ⋅ e ⃗ y ( 14 ) \vec{a} = a_X \cdot \vec{e}_X + a_Y \cdot \vec{e}_Y = a_x \cdot \vec{e}_x + a_y \cdot \vec{e}_y \qquad(14) a =aXe X+aYe Y=axe x+aye y14

  采用上文中推导速度关系类似的方法,可以将式(7)和式(9)代入式(14)中分别得到式(15)和式(16):
{ a X = a x cos ⁡ θ − a y sin ⁡ θ a Y = a x sin ⁡ θ + a y cos ⁡ θ ( 15 ) \begin{cases} a_X = a_x \cos \theta - a_y \sin \theta \\ a_Y = a_x \sin \theta + a_y \cos \theta \end{cases} \qquad(15) {aX=axcosθaysinθaY=axsinθ+aycosθ15

{ a x = a X cos ⁡ θ + a Y sin ⁡ θ a y = − a X sin ⁡ θ + a Y cos ⁡ θ ( 16 ) \begin{cases} a_x = a_X \cos \theta + a_Y \sin \theta \\ a_y = -a_X \sin \theta + a_Y \cos \theta \end{cases} \qquad(16) {ax=aXcosθ+aYsinθay=aXsinθ+aYcosθ16

  将式(12)对时间进行求导可得:
{ v ˙ X = v ˙ x cos ⁡ θ − v x θ ˙ sin ⁡ θ − v ˙ y sin ⁡ θ − v y θ ˙ cos ⁡ θ = ( v ˙ x − v y θ ˙ ) cos ⁡ θ − ( v ˙ y + v x θ ˙ ) sin ⁡ θ v ˙ Y = v ˙ x sin ⁡ θ + v x θ ˙ cos ⁡ θ + v ˙ y cos ⁡ θ − v y θ ˙ sin ⁡ θ = ( v ˙ x − v y θ ˙ ) sin ⁡ θ + ( v ˙ y + v x θ ˙ ) cos ⁡ θ ( 17 ) \begin{cases} \dot{v}_X = \dot{v}_x \cos \theta - v_x \dot{\theta} \sin \theta - \dot{v}_y \sin \theta - v_y \dot{\theta} \cos \theta = (\dot{v}_x - v_y \dot{\theta}) \cos \theta - (\dot{v}_y + v_x \dot{\theta}) \sin \theta \\ \dot{v}_Y = \dot{v}_x \sin \theta + v_x \dot{\theta} \cos \theta + \dot{v}_y \cos \theta - v_y \dot{\theta} \sin \theta = (\dot{v}_x - v_y \dot{\theta}) \sin \theta + (\dot{v}_y + v_x \dot{\theta}) \cos \theta \end{cases} \qquad(17) {v˙X=v˙xcosθvxθ˙sinθv˙ysinθvyθ˙cosθ=(v˙xvyθ˙)cosθ(v˙y+vxθ˙)sinθv˙Y=v˙xsinθ+vxθ˙cosθ+v˙ycosθvyθ˙sinθ=(v˙xvyθ˙)sinθ+(v˙y+vxθ˙)cosθ17

  对比式(15)与式(17)并结合式(16),可得:
{ a X = v ˙ X = ( v ˙ x − v y θ ˙ ) cos ⁡ θ − ( v ˙ y + v x θ ˙ ) sin ⁡ θ a Y = v ˙ Y = ( v ˙ x − v y θ ˙ ) sin ⁡ θ + ( v ˙ y + v x θ ˙ ) cos ⁡ θ ( 18 ) \begin{cases} a_X = \dot{v}_X = (\dot{v}_x - v_y \dot{\theta}) \cos \theta - (\dot{v}_y + v_x \dot{\theta}) \sin \theta \\ a_Y = \dot{v}_Y = (\dot{v}_x - v_y \dot{\theta}) \sin \theta + (\dot{v}_y + v_x \dot{\theta}) \cos \theta \end{cases} \qquad(18) {aX=v˙X=(v˙xvyθ˙)cosθ(v˙y+vxθ˙)sinθaY=v˙Y=(v˙xvyθ˙)sinθ+(v˙y+vxθ˙)cosθ18

{ a x = v ˙ x − v y θ ˙ a y = v ˙ y + v x θ ˙ ( 19 ) \begin{cases} a_x = \dot{v}_x - v_y \dot{\theta} \\ a_y = \dot{v}_y + v_x \dot{\theta} \end{cases} \qquad(19) {ax=v˙xvyθ˙ay=v˙y+vxθ˙19

{ a x = v ˙ X cos ⁡ θ + v ˙ Y sin ⁡ θ a y = − v ˙ X sin ⁡ θ + v ˙ Y cos ⁡ θ ( 20 ) \begin{cases} a_x = \dot{v}_X \cos \theta + \dot{v}_Y \sin \theta \\ a_y = -\dot{v}_X \sin \theta + \dot{v}_Y \cos \theta \end{cases} \qquad(20) {ax=v˙Xcosθ+v˙Ysinθay=v˙Xsinθ+v˙Ycosθ20

  关于车辆坐标系与世界坐标系中速度、加速度关系的推导到此处基本已经完成,如果有朋友觉得加速度关系推导仅依据式(15)与式(17)进行对比而得有些牵强或不太理解,可以往下继续查看另一种推导思路。

  本文中将大地坐标系作为惯性坐标系(即坐标系固定不变,可用于车辆进行运动参照),所以 e ⃗ X \vec{e}_X e X e ⃗ Y \vec{e}_Y e Y对时间求导为零:
{ e ⃗ ˙ X = 0 e ⃗ ˙ Y = 0 ( 21 ) \begin{cases} \dot{\vec{e}}_X=0 \\ \dot{\vec{e}}_Y=0 \end{cases} \qquad(21) {e ˙X=0e ˙Y=021

而车身坐标系作为非惯性参考系(即坐标系会随时间不断变化),所以可以将式(7)对时间进行求导,得:
{ e ⃗ ˙ x = − θ ˙ sin ⁡ θ ⋅ e ⃗ X + θ ˙ cos ⁡ θ ⋅ e ⃗ Y = θ ˙ ( − sin ⁡ θ ⋅ e ⃗ X + cos ⁡ θ ⋅ e ⃗ Y ) = θ ˙ ⋅ e ⃗ y e ⃗ ˙ y = − θ ˙ cos ⁡ θ ⋅ e ⃗ X − θ ˙ sin ⁡ θ ⋅ e ⃗ Y = − θ ˙ ( cos ⁡ θ ⋅ e ⃗ X + sin ⁡ θ ⋅ e ⃗ Y ) = − θ ˙ ⋅ e ⃗ x ( 22 ) \begin{cases} \dot{\vec{e}}_x = -\dot{\theta} \sin \theta \cdot \vec{e}_X + \dot{\theta} \cos \theta \cdot \vec{e}_Y = \dot{\theta} (-\sin \theta \cdot \vec{e}_X + \cos \theta \cdot \vec{e}_Y) = \dot{\theta} \cdot \vec{e}_y \\ \dot{\vec{e}}_y = -\dot{\theta} \cos \theta \cdot \vec{e}_X - \dot{\theta} \sin \theta \cdot \vec{e}_Y = -\dot{\theta} (\cos \theta \cdot \vec{e}_X + \sin \theta \cdot \vec{e}_Y) = -\dot{\theta} \cdot \vec{e}_x \end{cases} \qquad(22) {e ˙x=θ˙sinθe X+θ˙cosθe Y=θ˙(sinθe X+cosθe Y)=θ˙e ye ˙y=θ˙cosθe Xθ˙sinθe Y=θ˙(cosθe X+sinθe Y)=θ˙e x22

  将式(10)对时间求导可得:
v ⃗ ˙ = v ˙ X ⋅ e ⃗ X + v ˙ Y ⋅ e ⃗ Y = v ˙ x ⋅ e ⃗ x + v x ⋅ e ⃗ ˙ x + v ˙ y ⋅ e ⃗ y + v y ⋅ e ⃗ ˙ y ( 23 ) \dot{\vec{v}} = \dot{v}_X \cdot \vec{e}_X + \dot{v}_Y \cdot \vec{e}_Y = \dot{v}_x \cdot \vec{e}_x + v_x \cdot \dot{\vec{e}}_x + \dot{v}_y \cdot \vec{e}_y + v_y \cdot \dot{\vec{e}}_y \qquad(23) v ˙=v˙Xe X+v˙Ye Y=v˙xe x+vxe ˙x+v˙ye y+vye ˙y23

注意:在推导得到式(22)和式(23)的过程中,考虑了式(21)的代入。

  因为 a ⃗ = v ⃗ ˙ \vec{a} = \dot{\vec{v}} a =v ˙,所以结合式(14)、式(22)和式(23),可得:
a x ⋅ e ⃗ x + a y ⋅ e ⃗ y = v ˙ x ⋅ e ⃗ x + v x ⋅ e ⃗ ˙ x + v ˙ y ⋅ e ⃗ y + v y ⋅ e ⃗ ˙ y = ( v ˙ x − v y θ ˙ ) e ⃗ x + ( v ˙ y + v x θ ˙ ) e ⃗ y ( 24 ) \begin{aligned} a_x \cdot \vec{e}_x + a_y \cdot \vec{e}_y &= \dot{v}_x \cdot \vec{e}_x + v_x \cdot \dot{\vec{e}}_x + \dot{v}_y \cdot \vec{e}_y + v_y \cdot \dot{\vec{e}}_y \\ &= (\dot{v}_x - v_y \dot{\theta}) \vec{e}_x + (\dot{v}_y + v_x \dot{\theta}) \vec{e}_y \end{aligned} \qquad(24) axe x+aye y=v˙xe x+vxe ˙x+v˙ye y+vye ˙y=(v˙xvyθ˙)e x+(v˙y+vxθ˙)e y24

a X ⋅ e ⃗ X + a Y ⋅ e ⃗ Y = ( v ˙ x − v y θ ˙ ) e ⃗ x + ( v ˙ y + v x θ ˙ ) e ⃗ y = ( ( v ˙ x − v y θ ˙ ) cos ⁡ θ − ( v ˙ y + v x θ ˙ ) sin ⁡ θ ) e ⃗ X + ( ( v ˙ x − v y θ ˙ ) sin ⁡ θ + ( v ˙ y + v x θ ˙ ) cos ⁡ θ ) e ⃗ Y ( 25 ) \begin{aligned} a_X \cdot \vec{e}_X + a_Y \cdot \vec{e}_Y &= (\dot{v}_x - v_y \dot{\theta}) \vec{e}_x + (\dot{v}_y + v_x \dot{\theta}) \vec{e}_y \\ &= ((\dot{v}_x - v_y \dot{\theta}) \cos \theta - (\dot{v}_y + v_x \dot{\theta}) \sin \theta) \vec{e}_X \\ &+ ((\dot{v}_x - v_y \dot{\theta}) \sin \theta + (\dot{v}_y + v_x \dot{\theta}) \cos \theta) \vec{e}_Y \end{aligned} \qquad(25) aXe X+aYe Y=(v˙xvyθ˙)e x+(v˙y+vxθ˙)e y=((v˙xvyθ˙)cosθ(v˙y+vxθ˙)sinθ)e X+((v˙xvyθ˙)sinθ+(v˙y+vxθ˙)cosθ)e Y25

a x ⋅ e ⃗ x + a y ⋅ e ⃗ y = v ˙ X ⋅ e ⃗ X + v ˙ Y ⋅ e ⃗ Y = ( v ˙ X cos ⁡ θ + v ˙ Y sin ⁡ θ ) e ⃗ x + ( − v ˙ X sin ⁡ θ + v ˙ Y cos ⁡ θ ) e ⃗ y ( 26 ) \begin{aligned} a_x \cdot \vec{e}_x + a_y \cdot \vec{e}_y &= \dot{v}_X \cdot \vec{e}_X + \dot{v}_Y \cdot \vec{e}_Y \\ &= (\dot{v}_X \cos \theta + \dot{v}_Y \sin \theta) \vec{e}_x + (-\dot{v}_X \sin \theta + \dot{v}_Y \cos \theta) \vec{e}_y \end{aligned} \qquad(26) axe x+aye y=v˙Xe X+v˙Ye Y=(v˙Xcosθ+v˙Ysinθ)e x+(v˙Xsinθ+v˙Ycosθ)e y26

  依据式(24)、式(25)、式(26)可分别得出式(19)、式(18)、式(20)。据此,推导完成。

  • 14
    点赞
  • 62
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
像素与世界坐标系之间的转换涉及到两个步骤:从像素坐标系到相机坐标系转换,以及从相机坐标系世界坐标系转换。 首先,从像素坐标系到相机坐标系转换可以通过内参变换实现。内参矩阵包含了相机的焦距、主点位置和像素的缩放因子。通过将像素坐标转换为非齐次相机坐标,然后再转换为齐次坐标,可以得到相机坐标系下的坐标。 接下来,从相机坐标系世界坐标系转换可以通过外参变换实现。外参矩阵包含了相机的位置和姿态信息。将相机坐标系下的坐标转换为齐次坐标后,再与外参矩阵相乘,即可得到世界坐标系下的坐标。 需要注意的是,这两个变换之间的矩阵大小不同,需要分开计算。从像素坐标系到相机坐标系获得的相机坐标为非齐次坐标,需要转换为齐次坐标后再进行下一步变换。而在进行从相机坐标系世界坐标系转换时,需要将外参矩阵转换为齐次坐标后再进行计算。 综上所述,像素与世界坐标系转换可以通过内参变换和外参变换实现。\[1\] \[2\] \[3\] #### 引用[.reference_title] - *1* [像素坐标到世界坐标的转换](https://blog.csdn.net/weixin_42990464/article/details/128108533)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [无人机——像素坐标系世界坐标系(NED)](https://blog.csdn.net/qq_45088942/article/details/127030079)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值