文章目录
前言
在当今的数字世界中,向量数据库已经成为了存储和检索各种数据(无论是结构化的还是非结构化的)的首选工具。这些数据被转化为所谓的向量嵌入,由特定的模型生成。在开发利用深度学习,尤其是涉及到庞大的语言模型的应用程序时,向量存储起到了无可替代的作用。
一、什么是向量数据库?
我们生活的世界中,数据往往是复杂且无规则的,不是所有信息都能简单地适应传统的行列模式。特别是当我们处理图像、视频和自然语言这样的复杂非结构化数据时,向量数据库就显得尤为重要了。向量数据库,顾名思义,它以高维向量的形式存储数据。这些向量是一串数字,代表了某个对象的特征或属性。每一个向量都对应着一个独一无二的实体,比如一段文字、一张图片或一段视频。为什么选择向量呢?向量的魅力在于它们能够精准捕捉到数据的语义含义和相似度。将数据转化为向量后,我们就能通过数学方法来比较它们的相似性,从而执行如“寻找与此图片相似的图片”或“查找与这段文字语义相关的文档”等复杂的查询任务。
二、向量数据库的应用场景
向量数据库的出现极大地扩展了 AI 和 ML 应用的可能性。一些典型的应用场景包括:
- RAG 系统:将向量数据库与大型语言模型结合,可构建出基于