收藏关注不迷路!!
🌟文末获取源码+数据库🌟
感兴趣的可以先收藏起来,还有大家在毕设选题(免费咨询指导选题),项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
一、项目介绍
基于YoloV8的火焰烟雾检测系统是一种先进的火灾预警系统,它利用深度学习技术和YoloV8目标检测算法,实现对火焰和烟雾的实时检测与识别。以下是对该系统的详细介绍:
一、系统背景与意义
随着城市化进程的加速,火灾事故的频率和危害程度不断增加,对人们的生命财产安全构成严重威胁。传统的火焰烟雾检测方法往往依赖于人工巡检或简单的传感器,这些方法存在检测范围有限、误报率高等问题。因此,开发一种高效、准确的火焰烟雾检测系统具有重要的现实意义。基于YoloV8的火焰烟雾检测系统能够实现对火焰和烟雾的即时监测和警报,以预防火灾、保护生命财产安全。
二、YoloV8算法简介
YoloV8是Ultralytics团队基于先前成功的YOLO系列模型推出的最新版本,适用于目标检测、分割、分类任务,以及处理大规模数据集的学习。这个模型不仅能够在多种硬件设备上运行,包括CPU和GPU,而且设计上追求快速、准确且用户友好。YoloV8引入了一系列创新,包括新的骨干网络、无锚点(Ancher-Free)检测头和损失函数,旨在提升性能和灵活性。此外,该模型支持与早期YOLO版本的兼容,便于用户根据需求切换和比较不同版本。
二、功能介绍
基于YoloV8的火焰烟雾检测系统的实现流程主要包括以下几个步骤:
数据集构建:为了训练基于YoloV8的火焰烟雾检测系统,首先需要构建一个包含火焰和烟雾图像的数据集。这些数据集应包含各种场景下的火焰和烟雾图像,以覆盖不同的光照条件、烟雾浓度和火焰大小。同时,还需要对图像进行标注,以提供准确的训练标签。
模型训练:使用构建好的数据集对YoloV8模型进行训练。在训练过程中,可以通过调整学习率、优化算法等超参数来优化模型的性能。同时,还可以采用一些正则化技术,如L2正则化、数据增强等,来防止模型过拟合。
模型评估与优化:使用测试数据集对训练好的模型进行评估,计算准确率、召回率等指标来评估模型的性能。如果模型的性能不佳,可以对模型进行进一步的优化和调整,如增加网络深度、改变卷积核大小等。
系统部署与应用:将训练好的模型部署到实际环境中,实现对火焰和烟雾的实时检测和识别。系统可以通过摄像头或图像传感器获取实时的视频或图像数据,并自动进行火焰和烟雾的检测。
三、核心代码
部分代码:
import time
from PyQt5.QtWidgets import QApplication , QMainWindow, QFileDialog, \
QMessageBox,QWidget,QHeaderView,QTableWidgetItem, QAbstractItemView
import sys
import os
from PIL import ImageFont
from ultralytics import YOLO
sys.path.append('UIProgram')
from UIProgram.UiMain import Ui_MainWindow
import sys
from PyQt5.QtCore import QTimer, Qt, QThread, pyqtSignal,QCoreApplication
import detect_tools as tools
import cv2
import Config
from UIProgram.QssLoader import QSSLoader
from UIProgram.precess_bar import ProgressBar
import numpy as np
# import torch
class MainWindow(QMainWindow):
def __init__(self, parent=None):
super(QMainWindow, self).__init__(parent)
self.ui = Ui_MainWindow()
self.ui.setupUi(self)
self.initMain()
self.signalconnect()
# 加载css渲染效果
style_file = 'UIProgram/style.css'
qssStyleSheet = QSSLoader.read_qss_file(style_file)
self.setStyleSheet(qssStyleSheet)
def signalconnect(self):
self.ui.PicBtn.clicked.connect(self.open_img)
self.ui.comboBox.activated.connect(self.combox_change)
self.ui.VideoBtn.clicked.connect(self.vedio_show)
self.ui.CapBtn.clicked.connect(self.camera_show)
self.ui.SaveBtn.clicked.connect(self.save_detect_video)
self.ui.ExitBtn.clicked.connect(QCoreApplication.quit)
self.ui.FilesBtn.clicked.connect(self.detact_batch_imgs)
def initMain(self):
self.show_width = 770
self.show_height = 480
self.org_path = None
self.is_camera_open = False
self.cap = None
# self.device = 0 if torch.cuda.is_available() else 'cpu'
# 加载检测模型
self.model = YOLO(Config.model_path, task='detect')
self.model(np.zeros((48, 48, 3))) #预先加载推理模型
self.fontC = ImageFont.truetype("Font/platech.ttf", 25, 0)
# 用于绘制不同颜色矩形框
self.colors = tools.Colors()
# 更新视频图像
self.timer_camera = QTimer()
# 更新检测信息表格
# self.timer_info = QTimer()
# 保存视频
self.timer_save_video = QTimer()
# 表格
self.ui.tableWidget.verticalHeader().setSectionResizeMode(QHeaderView.Fixed)
self.ui.tableWidget.verticalHeader().setDefaultSectionSize(40)
self.ui.tableWidget.setColumnWidth(0, 80) # 设置列宽
self.ui.tableWidget.setColumnWidth(1, 200)
self.ui.tableWidget.setColumnWidth(2, 150)
self.ui.tableWidget.setColumnWidth(3, 90)
self.ui.tableWidget.setColumnWidth(4, 230)
# self.ui.tableWidget.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) # 表格铺满
# self.ui.tableWidget.horizontalHeader().setSectionResizeMode(0, QHeaderView.Interactive)
# self.ui.tableWidget.setEditTriggers(QAbstractItemView.NoEditTriggers) # 设置表格不可编辑
self.ui.tableWidget.setSelectionBehavior(QAbstractItemView.SelectRows) # 设置表格整行选中
self.ui.tableWidget.verticalHeader().setVisible(False) # 隐藏列标题
self.ui.tableWidget.setAlternatingRowColors(True) # 表格背景交替
# 设置主页背景图片border-image: url(:/icons/ui_imgs/icons/camera.png)
# self.setStyleSheet("#MainWindow{background-image:url(:/bgs/ui_imgs/bg3.jpg)}")
def open_img(self):
if self.cap:
# 打开图片前关闭摄像头
self.video_stop()
self.is_camera_open = False
self.ui.CaplineEdit.setText('摄像头未开启')
self.cap = None
# 弹出的窗口名称:'打开图片'
# 默认打开的目录:'./'
# 只能打开.jpg与.gif结尾的图片文件
# file_path, _ = QFileDialog.getOpenFileName(self.ui.centralwidget, '打开图片', './', "Image files (*.jpg *.gif)")
file_path, _ = QFileDialog.getOpenFileName(None, '打开图片', './', "Image files (*.jpg *.jepg *.png)")
if not file_path:
return
四、效果图
五、文章目录
目 录
1 绪 论 1
1.1 选题的背景 1
1.2 国内外研究现状 1
1.3 选题的目的和意义 1
1.4主要研究内容 3
2 相关技术介绍 5
2.1 卷积神经网络 5
2.2 系统开发相关技术 9
3 数据获取及预处理 14
3.1 数据集的获取及简介 14
3.2 数据预处理 17
4 模型训练与评估 18
4.1 模型选择 14
3.2 模型训练 17
4.3 模型评估 17
5 模型优化 18
5.1 优化器选择 14
5.2 效果对比分析 17
6 系统部署 19
6.1 需求分析 14
6.2 系统设计与实现 17
6.3 系统测试 17
7 总结与展望 29
7.1 总结 29
7.2 展望 29
参考文献 30
致 谢 33
六 、源码获取
下方名片联系我即可!!
大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻