MachineLearning—Logistic Regression(四)-逻辑回归应用于手写数字识别

    之前的文章对逻辑回归已经进行了较为详尽的介绍,在此我们为了更为迅速方便的理解逻辑回归在手写数字识别当中的应用,我们仅仅做简单快速的回顾。逻辑回归通常应用于二分类问题,而经过拓展其也可以应用于多分类问题,此问题读者可以去看本人写的这篇文章机器学习-Softmax Regression


(一)逻辑回归原理回顾


逻辑回归的主要目的就是寻找图中的蓝色最佳分界线,其中x1,x2可以理解为两个特征,每个特征会对应一个权值θ,则分界线的表达式就是:Θ0*x0+Θ1*x1+Θ2*x2=Θ0+Θ1*x1+Θ2*x2=0, 分类边界可以统一表示成f(x)=ΘT*x,


记住梯度上升的权值更新公式对于理解代码非常重要,如下:


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值