增量式PID与位置式PID的理解与代码实现

一、PID控制算法概述
PID 实指“比例 proportional”、“积分 integral”、“微分 derivative”,这三项构 成 PID 基本要素。每一项完成不同任务,对系统功能产生不同的影响。它的结构简单,参数易 于调整,是控制系统中经常采用的控制算法。
PID:比例单元(P)、积分单元(I)和微分单元(D)组成
在这里插入图片描述
一、增量式PID
在这里插入图片描述

比例P : e(k)-e(k-1) 这次误差-上次误差
积分I : e(i) 误差
微分D : e(k) - 2e(k-1)+e(k-2) 这次误差-2*上次误差+上上次误差
         增量式PID根据公式可以很好地看出,一旦确定了 KP、TI 、TD,只要使用前后三次测量值的偏差, 即可由公式求出控制增量而得出的控制量▲u(k)对应的是近几次位置误差的增量,而不是对应与实际位置的偏差没有误差累加也就是说,增量式PID中不需要累加。控制增量Δu(k)的确定仅与最近3次的采样值有关,容易通过加权处理获得比较好的控制效果,并且在系统发生问题时,增量式不会严重影响系统的工作
         总结:增量型 PID,是对位置型 PID 取增量,这时控制器输出的是相邻两次采样时刻所计算的位置值
之差,得到的结果是增量,即在上一次的控制量的基础上需要增加(负值意味减少)控制量。

struct inc_pid_controller
{
    struct controller   controller;
    
    float               kp;
    float               ki;
    float               kd;

    float               minimum;
    float               maximum;

    float               p_error;
    float               i_error;
    float               d_error;

    float               error;
    float               error_l;
    float               error_ll;

    float               last_out;
    rt_tick_t           last_time;
};
static rt_err_t inc_pid_controller_update(void *pid, float current_point)
{
    inc_pid_controller_t inc_pid = (inc_pid_controller_t)pid;
    // TODO
    if((rt_tick_get() - inc_pid->last_time) < rt_tick_from_millisecond(inc_pid->controller.sample_time))
    {
        LOG_D("PID waiting ... ");
        return RT_EBUSY;
    }
    inc_pid->last_time = rt_tick_get();

    inc_pid->error = inc_pid->controller.target - current_point;

    inc_pid->p_error = inc_pid->kp * (inc_pid->error - inc_pid->error_l);
    inc_pid->i_error = inc_pid->ki * inc_pid->error;
    inc_pid->d_error = inc_pid->kd * (inc_pid->error - 2 * inc_pid->error_l + inc_pid->error_ll);

    inc_pid->last_out += inc_pid->p_error + inc_pid->i_error + inc_pid->d_error;

    if (inc_pid->last_out > inc_pid->maximum)
    {
        inc_pid->last_out = inc_pid->maximum;
    }
    if (inc_pid->last_out < inc_pid->minimum)
    {
        inc_pid->last_out = inc_pid->minimum;
    }

    inc_pid->error_ll = inc_pid->error_l;
    inc_pid->error_l = inc_pid->error;

    inc_pid->controller.output = inc_pid->last_out;

    return RT_EOK;
}

二、位置式PID
在这里插入图片描述

e(k): 用户设定的值(目标值) - 控制对象的当前的状态值
比例P : e(k)
积分I : ∑e(i) 误差的累加
微分D : e(k) - e(k-1) 这次误差-上次误差
         也就是位置式PID是当前系统的实际位置,与你想要达到的预期位置的偏差,进行PID控制因为有误差积分 ∑e(i),一直累加,也就是当前的输出u(k)与过去的所有状态都有关系,用到了误差的累加值;(误差e会有误差累加),输出的u(k)对应的是执行机构的实际位置,,一旦控制输出出错(控制对象的当前的状态值出现问题 ),u(k)的大幅变化会引起系统的大幅变化并且位置式PID在积分项达到饱和时,误差仍然会在积分作用下继续累积,一旦误差开始反向变化,系统需要一定时间从饱和区退出,所以在u(k)达到最大和最小时,要停止积分作用,并且要有积分限幅和输出限幅
         所以在使用位置式PID时,一般我们直接使用PD控制
         而位置式 PID 适用于执行机构不带积分部件的对象,如舵机和平衡小车的直立和温控系统的控制

struct pos_pid_controller
{
    struct controller   controller;
    
    float               kp;
    float               ki;
    float               kd;

    float               minimum;
    float               maximum;
    float               anti_windup_value;

    float               p_error;
    float               i_error;
    float               d_error;

    float               integral;
    float               error;
    float               error_l;

    float               last_out;
    rt_tick_t           last_time;
};
static rt_err_t pos_pid_controller_update(void *pid, float current_point)
{
    pos_pid_controller_t pos_pid = (pos_pid_controller_t)pid;

    if((rt_tick_get() - pos_pid->last_time) < rt_tick_from_millisecond(pos_pid->controller.sample_time))
    {
        LOG_D("PID waiting ... ");
        return RT_EBUSY;
    }
    pos_pid->last_time = rt_tick_get();

    pos_pid->error = pos_pid->controller.target - current_point;

    pos_pid->integral += pos_pid->ki * pos_pid->error;

    //Perform integral value capping to avoid internal PID state to blows up
    //when controllertuators saturate:
    if(pos_pid->integral > pos_pid->anti_windup_value) {
        pos_pid->integral = pos_pid->anti_windup_value;
    } else if (pos_pid->integral < -pos_pid->anti_windup_value) {
        pos_pid->integral = -pos_pid->anti_windup_value;
    }

    pos_pid->p_error = pos_pid->kp * pos_pid->error;
    pos_pid->i_error = pos_pid->integral;
    pos_pid->d_error = pos_pid->kd * (pos_pid->error - pos_pid->error_l);

    pos_pid->last_out = pos_pid->p_error + pos_pid->i_error + pos_pid->d_error;
    if (pos_pid->last_out > pos_pid->maximum)
    {
        pos_pid->last_out = pos_pid->maximum;
    }
    if (pos_pid->last_out < pos_pid->minimum)
    {
        pos_pid->last_out = pos_pid->minimum;
    }

    pos_pid->error_l = pos_pid->error;

    pos_pid->controller.output = pos_pid->last_out;

    return RT_EOK;
}
动态追踪是一种利用传感器和控制器来实时跟踪目标的技术。在许多应用中,如机器人导航和自动驾驶,动态追踪被广泛使用。 STM32是一种基于ARM Cortex-M内核的32位微控制器系列。它具有高性能、低功耗和强大的外设集成,因此被广泛应用于嵌入式系统和物联网应用中。在动态追踪中,STM32可以作为主控制器,负责读取传感器数据、计算控制信号等任务。 增量式PID算法是一种针对动态追踪控制的控制算法。PID控制器是一种经典的控制方法,用于实现目标追踪和保持稳定性。增量式PID算法通过计算当前误差和前一次误差之间的差值,来调整控制量,以平衡系统响应速度和稳定性。在动态追踪中,增量式PID算法可以用于计算舵机的控制信号,以使舵机能够准确地追踪目标。 OpenMV是一个开源的机器视觉平台,用于开发视觉相关的嵌入式应用。它可以STM32等平台结合使用,实现动态追踪任务。OpenMV提供了丰富的图像处理功能,可以用于检测目标、跟踪目标等任务,为动态追踪提供了便利的工具。 舵机是一种常见的电机,主要用于控制机械装置的运动。在动态追踪中,舵机可以用于控制机械臂、摄像头等设备的移动,以实现目标的追踪。舵机通常具有高精度和稳定性,可以通过接收STM32计算的控制信号来进行准确的位置调整。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小灰灰搞电子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值