用PointNet++训练自己的数据集(语义分割模型semseg)

(1)训练部件分割(partseg)模型和检测自己点云并将结果保存txt,请看博主上两篇文章
(2)本文背景是将pipe点云上的缺陷和本体检测出来,即1种语义场景(pipe),2种类别(body和quexian)。请记住这两个数字。

一、标注数据集:

step1:数据集预处理

参考:Windows11和Ubuntu用PointNet++训练自己的数据集(部件分割模型)的第一部分即“一、标注数据集”部分即可。得到分类好的n行4列的txt文件。如果是部件分割(partseg)就结束了,但这里是语义分割(semseg)标注很麻烦,还没完成!我这里操作完后得到了m个txt文件,即原本有m个pipe的点云txt文本。

step1结果:
在这里插入图片描述
在这里插入图片描述

step2:学习语义分割数据集的格式

参考:S3DIS场景点云数据集,仔细阅读
这里用Stanford3dDataset_v1.2_Aligned_Version模式。格式是x y z r g b格式 即n行6列

step3:制作语义分割txt格式数据集(可以问deepseek,见step3末尾)

思路:用matlab依次遍历step1中每个txt点云文件,在进行操作:将标签为0的点,去掉0并将后三位替换为某个rgb值,再将标签为1的点后三位替换为另外某个rgb值。(因为我只有两个类别,所以我就只有0和1。)。

注意:最后要符合语义分割数据集的格式,即每个场景(即step1得到的每个txt文件)单独一个文件夹名字叫做pipe_i(i从1到m),文件夹下存着step1结果中第m个点云(n行6列)pipe_i.txt还有一个Annotations文件夹。Annotations文件夹下有2个txt文件(本文的2种类别),分别是body_i.txt和quexian_i.txt,即两种类别的n行6列的文本文件。逻辑是:body_i.txt + quexian_i.txt=pipe_i.txt

step3结果:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

deepseek实现step3

我的某个文件夹里有42个txt文件,名字分别是1.txt~42.txt.每个txt文件有n行4列,中间用空格隔开,即每个文件有n个空间点 前三列是xyz后一列是标签,这42个文件里的每个点只有两个标签即0和1可能是浮点型。你也知道上面这种格式是做pointnet++部件分割的,现在我要改成语义分割,需要把标签变成rgb。所以现在要你遍历每个txt文件(可以用for数字遍历,因为名字有规律),把每个文件里的0标签的点换为rgb为[0 0 1],1标签是换为[1 0 0]即n行6列xyzrgb 每列用空格隔开。但是要求每个txt要单独建立一个文件夹叫做pipe_i,i是和i.txt的i相对应。pipe_i文件夹下有个pipe_i.txt放着i.txt的变换好的文件,pipe_i文件夹下的Annotations文件夹下有单独的按照标签的txt,之前为0标签的点标签变换rgb后就放到命名为body_i.txt,之前为1标签的点标签变换rgb后就放到命名为quexian_i.txt。即完全符合语义分割的数据格式。matlab实现
在这里插入图片描述
Matlab代码如下:运行时间会很长!!其中的rgb的值都是0~1可以自己改。

%%
%设置pointnet++语义分割数据集
% 设置输入路径和输出路径
input_path = 'D:\YinParker\Desktop\管道数据集4\biaozhu';  % 输入文件路径
output_root = 'D:\YinParker\Desktop\管道数据集4\semseg';  % 输出根目录

% 创建输出根目录(如果不存在)
if ~exist(output_root, 'dir')
    mkdir(output_root);
end

% 遍历1.txt到42.txt
for i = 1:42
    % 输入文件名
    input_filename = fullfile(input_path, sprintf('%d.txt', i));
    
    % 检查文件是否存在
    if ~exist(input_filename, 'file')
        fprintf('文件不存在: %s\n', input_filename);
        continue;
    end
    
    % 读取数据
    data = load(input_filename);
    xyz = data(:, 1:3);
    labels = data(:, 4);
    
    % 创建对应的输出目录结构
    pipe_dir = fullfile(output_root, sprintf('pipe_%d', i));
    annotations_dir = fullfile(pipe_dir, 'Annotations');
    
    if ~exist(pipe_dir, 'dir')
        mkdir(pipe_dir);
    end
    if ~exist(annotations_dir, 'dir')
        mkdir(annotations_dir);
    end
    
    % 准备转换后的数据(xyzrgb)
    rgb_data = zeros(size(data, 1), 6);
    rgb_data(:, 1:3) = xyz;
    
    % 分离不同标签的点(带RGB)
    body_points = [];
    quexian_points = [];
    
    for j = 1:size(data, 1)
        if abs(labels(j)) < 0.5  % 处理浮点型标签
            % 标签0 -> 蓝色 [0 0 1]
            rgb_data(j, 4:6) = [0 0 1];
            body_points = [body_points; xyz(j, :), 0, 0, 1];  % 添加RGB
        else
            % 标签1 -> 红色 [1 0 0]
            rgb_data(j, 4:6) = [1 0 0];
            quexian_points = [quexian_points; xyz(j, :), 1, 0, 0];  % 添加RGB
        end
    end
    
    % 保存转换后的主文件(pipe_i.txt)
    output_main_file = fullfile(pipe_dir, sprintf('pipe_%d.txt', i));
    dlmwrite(output_main_file, rgb_data, 'delimiter', ' ');
    
    % 保存带RGB的标签文件(Annotations/body_i.txt和quexian_i.txt)
    if ~isempty(body_points)
        body_file = fullfile(annotations_dir, sprintf('body_%d.txt', i));
        dlmwrite(body_file, body_points, 'delimiter', ' ');
    end
    
    if ~isempty(quexian_points)
        quexian_file = fullfile(annotations_dir, sprintf('quexian_%d.txt', i));
        dlmwrite(quexian_file, quexian_points, 'delimiter', ' ');
    end
    
    fprintf('已处理文件: %s\n', input_filename);
end

fprintf('所有文件处理完成!结果保存在: %s\n', output_root);

step4:txt格式数据集变为npy

语义分割需要.npy格式的数据集,这也是麻烦的地方。
在PointNet++工程文件夹下的data文件夹建立s3dis文件夹,再在s3dis里面建立Stanford3dDataset_v1.2_Aligned_Version文件夹,里面有Area_1和Area_2两个文件夹。后面会在程序参数设置中让Area_2里的数据为测试集。再从step3中的pipe_i文件夹里找点文件复制进去,当做训练集(Area1)和测试集(Area2)。结构图如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

再在data文件夹下建立stanford_indoor3d用于存储npy格式的文件。
在这里插入图片描述

再修改anno_paths.txt和class_names.txt ,anno_paths.txt写所有Area的Annotations的路径,class_names.txt写类别,和之前的step3中得到的Annotions里的相对应。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

用collect_indoor3d_data.py和indoor3d_util.py将txt样本变为npy样本 。参考:【PointNet++】基于自建数据训练PointNet++场景语义分割网络
在这里插入图片描述
(1)collect_indoor3d_data.py修改:

1/1 加一行代码:out_filename=os.path.basename(os.path.join(output_folder, out_filename)),不然生成的npy文件路径不对,还得自己复制到data/stanford_indoor3d文件夹下
在这里插入图片描述

(2)indoor3d_util.py修改: 改方框的两处地方:
在这里插入图片描述

运行collect_indoor3d_data.py在 data/stanford_indoor3d文件夹下生成npy文件,且前面有Area_1和2的前缀。
在这里插入图片描述

二、修改训练和测试代码以及S3DISDataLoader.py

参考:
【PointNet++】基于自建数据训练PointNet++场景语义分割网络
【PointNet++】PointNet++复现(PyTorch版本)

1、训练代码修改:train_semseg.py

(1)类别:
在这里插入图片描述
(2)改参数:其中最后一个参数指定哪个Area是测试集,剩下参数都根据实际调整
在这里插入图片描述
(3)类别数:
在这里插入图片描述
(4)(5)numpy版本问题
在这里插入图片描述

2、测试代码修改:test_semseg.py

测试的参数batch_size、num_point等参数根据自己实际调整

(1)类别:
在这里插入图片描述
(2)类别数量:
在这里插入图片描述

3、S3DISDataLoader.py修改

参考文献中老哥少改了一个
(1)数字:
在这里插入图片描述
(2)数字:得+1
在这里插入图片描述
(3)数字:
在这里插入图片描述
(4)补充: 其实后面两个也不用改,因为后两个在class ScannetDatasetWholeScene而前两个在class S3DISDataset(Dataset):里,这里只用到了class S3DISDataset(Dataset):
在这里插入图片描述

pointnet2_sem_seg.py改动

用这个模型就改,不用这个就改别的模型
在这里插入图片描述

三、训练以及训练中报错:

运行train_semseg.py即可开启训练。

报错1:

Traceback (most recent call last):
  File "D:\YinParker\Desktop\AllFileFolder\A_Other_projects_in_laboratory\pointNet2\Pointnet_Pointnet2_pytorch-master\train_semseg.py", line 302, in <module>
    main(args)
  File "D:\YinParker\Desktop\AllFileFolder\A_Other_projects_in_laboratory\pointNet2\Pointnet_Pointnet2_pytorch-master\train_semseg.py", line 186, in main
    for i, (points, target) in tqdm(enumerate(trainDataLoader), total=len(trainDataLoader), smoothing=0.9):
  File "E:\ProfessionSoftware2\anaconda\anaconda3202303\envs\yolov8Python310\lib\site-packages\torch\utils\data\dataloader.py", line 438, in __iter__
    return self._get_iterator()
  File "E:\ProfessionSoftware2\anaconda\anaconda3202303\envs\yolov8Python310\lib\site-packages\torch\utils\data\dataloader.py", line 386, in _get_iterator
    return _MultiProcessingDataLoaderIter(self)
  File "E:\ProfessionSoftware2\anaconda\anaconda3202303\envs\yolov8Python310\lib\site-packages\torch\utils\data\dataloader.py", line 1039, in __init__
    w.start()
  File "E:\ProfessionSoftware2\anaconda\anaconda3202303\envs\yolov8Python310\lib\multiprocessing\process.py", line 121, in start
    self._popen = self._Popen(self)
  File "E:\ProfessionSoftware2\anaconda\anaconda3202303\envs\yolov8Python310\lib\multiprocessing\context.py", line 224, in _Popen
    return _default_context.get_context().Process._Popen(process_obj)
  File "E:\ProfessionSoftware2\anaconda\anaconda3202303\envs\yolov8Python310\lib\multiprocessing\context.py", line 336, in _Popen
    return Popen(process_obj)
  File "E:\ProfessionSoftware2\anaconda\anaconda3202303\envs\yolov8Python310\lib\multiprocessing\popen_spawn_win32.py", line 93, in __init__
    reduction.dump(process_obj, to_child)
  File "E:\ProfessionSoftware2\anaconda\anaconda3202303\envs\yolov8Python310\lib\multiprocessing\reduction.py", line 60, in dump
    ForkingPickler(file, protocol).dump(obj)
AttributeError: Can't pickle local object 'main.<locals>.<lambda>'
Traceback (most recent call last):
  File "<string>", line 1, in <module>
  File "E:\ProfessionSoftware2\anaconda\anaconda3202303\envs\yolov8Python310\lib\multiprocessing\spawn.py", line 116, in spawn_main
    exitcode = _main(fd, parent_sentinel)
  File "E:\ProfessionSoftware2\anaconda\anaconda3202303\envs\yolov8Python310\lib\multiprocessing\spawn.py", line 126, in _main
    self = reduction.pickle.load(from_parent)
EOFError: Ran out of input

在这里插入图片描述
在这里插入图片描述
原因:gpt说是train_semseg.py有两处lambda表达式在window不行

法一:改lanbda表达式(推荐法二)

(1)改:参考行号
在这里插入图片描述

在这里插入图片描述
(2)得import functools
在这里插入图片描述
法二:
如何使用PointNet++复现自己的点云语义分割数据集?
如果你是windows系统,那你应该还要注意num_workers设置为0,否则会报错的。 仅需改两处
在这里插入图片描述

报错2:

也不是报错,就是训练代码运行后一直卡住,
在这里插入图片描述
原因:S3DISDataLoader.py里有个一直循环,点数没有达到1024个
在这里插入图片描述
因为1*1平方米内自己点太少了,达不到训练时设置的参数--npoint(超参数)在这里插入图片描述
解决方法:train_semseg.py里把参数1调大也行 或者 将上图S3DISDataLoader.py里把1024调小
在这里插入图片描述

如果对你有帮助,可以点赞、收藏支持一波

### PointNet 自定义数据集语义分割教程 #### 数据准备 要使用PointNet进行自定义数据集语义分割,首先需要准备好合适的数据格式。通常情况下,PointNet依赖于点云数据作为输入,并且这些数据应按照特定结构组织以便模型能够正确读取和解析。 根据已知的信息[^1],可以借鉴ShapeNetCore数据集的格式来构建自定义数据集。具体来说,每个样本应该包含以下部分: - **点坐标**: 每个点由其三维空间中的 (x, y, z) 坐标表示。 - **法向量(可选)**: 如果可用,则提供每一点的方向信息。 - **类别标签**: 对于每一个点,都需要有一个对应的语义分类标签。 这种格式允许网络学习到不同类别的几何特征并做出预测。 #### 训练流程设置 一旦完成了数据预处理工作之后,下一步就是配置好训练环境以及调整超参数以适应新的任务需求。这里提到的方法适用于任何基于PyTorch或其他框架实现版本的PointNet架构。 以下是几个重要的方面需要注意: - **模型初始化**: 加载官方或者社区维护好的开源代码库中已经实现了的标准PointNet模型文件。 - **损失函数的选择**: 针对语义分割问题,交叉熵损失是一个常用选项因为它能很好地衡量实际分布与目标之间的差异程度[^2]. 下面给出一段简单的Python脚本来展示如何加载数据并启动一次基本的训练过程: ```python import torch from pointnet import PointNetSeg # Assume this is your implementation of the segmentation model. device = 'cuda' if torch.cuda.is_available() else 'cpu' model = PointNetSeg(num_classes=NUM_CLASSES).to(device) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) for epoch in range(NUM_EPOCHS): for data in dataloader: points, target = data['points'].to(device), data['labels'].to(device) optimizer.zero_grad() pred = model(points.transpose(2, 1)) # Adjust dimensions as needed by network. loss = criterion(pred.view(-1, NUM_CLASSES), target.view(-1)) loss.backward() optimizer.step() print(f"Finished Training with final loss {loss.item():.4f}") ``` 上述代码片段展示了标准的前馈神经网络训练循环的一部分,其中包含了正向传播、计算误差梯度反向传递更新权重的过程。 #### 后处理与评估指标 完成训练阶段后,还需要考虑如何有效地评价我们的成果。常用的性能测量手段包括但不限于精确率(Precision),召回率(Recall),F1分数(F-Score)等统计学概念;另外还有IoU(intersection over union)这样的区域重叠比例也是特别针对图像识别领域的有效工具之一[^3]。 --- ###
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值