读书笔记: NonLinear System Identification, Chapter 10


《Nonlinear System Identification From Classical Approaches to Neural Networks, Fuzzy Models, and Gaussian Processes, Second Edition》

Chapter 10 : 线性、多项式、查找表模型

10.1 线性模型

y ^ = ∑ i = 0 p w i u i with u 0 = 1 \hat y = \sum^p_{i=0}w_iu_i \quad \text{with} \quad u_0=1 y^=i=0pwiuiwithu0=1

特性:

  • 内插是线性
  • 外插是线性
  • 没有局部特性
  • 精度低
  • 光滑度高
  • 对噪音不敏感
  • 参数优化速度快
  • 结构优化可使用linear subset selection technique例如OLS
  • 可在线自适应(使用RLS)
  • Training速度快
  • Evaluation速度快
  • 可解释
  • 可处理约束,使用二次规划可处理输出约束和参数约束
  • 以惩罚形式附加先验知识,如岭回归
  • 实用性非常高

10.2 多项式模型

y ^ = ∑ i = 0 p θ i x i with x 0 = 1 \hat y = \sum^p_{i=0}\theta_ix_i \quad \text{with} \quad x_0=1 y^=i=0pθixiwithx0=1
其中 x i x_i xi u i u_i ui的各阶次幂的乘积,例如,三输入二次多项式模型:
y ^ = θ 0 + θ 1 u 1 + θ 2 u 2 + θ 3 u 3 + θ 4 u 1 2 + θ 5 u 1 u 2 + θ 6 u 1 u 3 + θ 7 u 2 2 + θ 8 u 2 u 3 + θ 9 u 3 2 \hat{y}=\theta _0+\theta _1u_1+\theta _2u_2+\theta _3u_3 +\theta _4u_{1}^{2}+\theta _5u_1u_2+\theta _6u_1u_3+\theta _7u_{2}^{2}+\theta _8u_2u_3+\theta _9u_{3}^{2} y^=θ0+θ1u1+θ2u2+θ3u3+θ4u12+θ5u1u2+θ6u1u3+θ7u22+θ8u2u3+θ9u32

10.2.1正则化多项式

添加 λ \lambda λ惩罚,可减小各个参数值,增项鲁棒性

直接加 λ \lambda λ正则化会在offset或bias上加惩罚,但是这是不合理的。一般而言有两个方法:

  • 不使用LS估计bias,直接将 θ 0 \theta_0 θ0设为输出的均值
  • 在惩罚中去除bias对应的项
    θ ^ = ( X T X + λ I ~ ) − 1 X T y \hat{\theta}=(X^TX+\lambda\tilde I)^{-1}X^Ty θ^=(XTX+λI~)1XTy
    其中 I ~ = d i a g ( 0 , 1 , 1 , . . . ) \tilde{I}=\mathrm{diag}\left( 0,1,1,... \right) I~=diag(0,1,1,...)将bias对应的惩罚项给0

10.2.2 正交多项式

在制定区间内可另多项式正交,及满足不同阶次的多项式在 [ − 1 , 1 ] [-1, 1] [1,1]之间有
∫ − 1 1 f ( u ) g ( u ) d u = 0 \int_{-1}^1{f\left( u \right) g\left( u \right) du=0} 11f(u)g(u)du=0
如果是正交归一,还应该有
∫ − 1 1 f ( u ) f ( u ) d u = 1 \int_{-1}^1{f\left( u \right) f\left( u \right) du=1} 11f(u)f(u)du=1
满足以上条件的多项式称为勒让德多项式。
L 0 ( u ) = 1 L 1 ( u ) = u L 2 ( u ) = 1 2 ( 3 u 2 − 1 ) L 3 ( u ) = 1 2 ( 5 u 3 − 3 u ) L 4 ( u ) = 1 8 ( 35 u 4 − 30 u 2 + 3 ) L 5 ( u ) = 1 8 ( 63 u 5 − 70 u 3 + 15 u ) \begin{aligned} L_0\left( u \right) &=1\\ L_1\left( u \right) &=u\\ L_2\left( u \right) &=\frac{1}{2}\left( 3u^2-1 \right)\\ L_3\left( u \right) &=\frac{1}{2}\left( 5u^3-3u \right)\\ L_4\left( u \right) &=\frac{1}{8}\left( 35u^4-30u^2+3 \right)\\ L_5\left( u \right) &=\frac{1}{8}\left( 63u^5-70u^3+15u \right)\\ \end{aligned} L0(u)L1(u)L2(u)L3(u)L4(u)L5(u)=1=u=21(3u21)=21(5u33u)=81(35u430u2+3)=81(63u570u3+15u)
在这里插入图片描述
正交性导致的结果就是在LS时各个系数是完全独立的,既增加或减少阶数不会影响参数的优化结果。
但以上结果只对 [ − 1 , 1 ] [-1, 1] [1,1]区间适用,因此在使用时需要归一化。

10.2.3 多项式模型的总结

  • 高次多项式的内插不稳定(龙格现象),正则化可缓解这个问题
  • 多项式的外推会趋向无穷
  • 不存在局部特性,只有全局特性
  • 精度有限,因为高阶多项式不实用
  • 光惯性差(因为龙格现象)
  • 对噪音敏感度低因为所有训练数据都对参数有贡献,但是训练数据数据中如果局部噪音很大,则会显著影像全局行为
  • 参数优化较快
  • 结构优化可以使用线性子集选择方法如OLS
  • 可以在线自适应,使用RLS
  • 训练速度快
  • 评估速度中等
  • 维数灾难
  • 不可解释
  • 使用二次规划可以处理约束
  • 无法处理先验信息
  • 使用频率较高

10.3 查找表模型

10.3.1 一维查找表

在这里插入图片描述
y ^ = w l ( c r − u ) + w r ( u − c l ) c r − c l \hat{y}=\frac{w_l(c_r-u)+w_r(u-c_l)}{c_{r}-c_{l}} y^=crclwl(cru)+wr(ucl)
一维查找表可写成如下标准形式
y ^ = ∑ i = 1 M w i Φ i ( u , c ) \hat{y}=\sum_{i=1}^M{w_i\Phi _i\left( u,c \right)} y^=i=1MwiΦi(u,c)
这是一个M点的查找表
Φ i ( u , c ) = { ( u − c i − 1 ) / ( c i − c i − 1 ) f o r c i − 1 ≤ u ≤ c i ( u − c i + 1 ) / ( c i − c i + 1 ) f o r c i < u ≤ c i + 1 0 o t h e r w i s e \Phi _i\left( u,c \right) =\begin{cases} \left( u-c_{i-1} \right) /\left( c_i-c_{i-1} \right)\quad \mathrm{for}\quad c_{i-1}\le u\le c_i\\ \left( u-c_{i+1} \right) /\left( c_i-c_{i+1} \right)\quad \mathrm{for}\quad c_i<u\le c_{i+1}\\ 0 \quad \mathrm{otherwise}\\ \end{cases} Φi(u,c)= (uci1)/(cici1)forci1uci(uci+1)/(cici+1)forci<uci+10otherwise
这个最简单的一维查找表可以理解为线性差值,或者一个简单的Fuzzy系统。

10.3.2 二维查找表

二维查找表使用基于栅格的方法实现,栅格法可以推广到更高维度,但是会产生维数灾难。使用矩形法代替栅格划分可以缓解维数灾难,能够处理4到5个输入。
对二维查找表,有
在这里插入图片描述
y ^ = w 1 , 1 a 2 , 2 + w 1 , 2 a 2 , 1 + w 2 , 1 a 1 , 2 + w 2 , 2 a 1 , 1 a 1 , 1 + a 1 , 2 + a 2 , 1 + a 2 , 2 \hat{y}=\frac{w_{1,1}a_{2,2}+w_{1,2}a_{2,1}+w_{2,1}a_{1,2}+w_{2,2}a_{1,1}}{a_{1,1}+a_{1,2}+a_{2,1}+a_{2,2}} y^=a1,1+a1,2+a2,1+a2,2w1,1a2,2+w1,2a2,1+w2,1a1,2+w2,2a1,1
其中 a i , j a_{i,j} ai,j是对应的面积,如此形成的差值叫做双线性插值或面积插值。
其等价与一个四参数的二次插值
y ^ = θ 0 + θ 1 u 1 + θ 2 u 2 + θ 3 u 1 u 2 \hat y=\theta_0+\theta_1u_1+\theta_2u_2 + \theta_3u_1u_2 y^=θ0+θ1u1+θ2u2+θ3u1u2

10.3.7 查找表特性

  • 内插分段线性
  • 没有外插
  • 强局部性
  • 精度中等
  • 光滑性很低
  • 对噪音敏感
  • 参数优化速度快 (LS)
  • 结构优化难以实现
  • 可以在线自适应(RLS)
  • 训练速度快
  • 评估速度快
  • 解释性差
  • 容易处理约束
  • 用模糊方法处理先验信息
  • 低维情况下非常常用

10.4 总结

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值