流形—Lie群和Lie代数

   经典力学分为矢量力学和分析力学。矢量力学中牛顿是开山鼻祖,又分为牛顿质点和质点系力学、牛顿欧拉刚体力学和胡克奈维尔弹性力学。其中飞行力学属于牛顿欧拉刚体力学范畴,飞行器运动方程组也是由建立在刚体上的两个矢量公式此导出的。拉格朗日在变分基础上开创了分析力学,他曾说在他的书上找不到一张图。他就是这样一个人,喜欢数学的纯分析推倒。哈密顿又将其推进演化出了基于能量概念的哈密顿力学,应该说哈密顿力学与量子力学的联系更为紧密。

    随后有了分析力学现代化的过程。经典力学中用了许多不同的数学方法和概念,微分方程和相流,光滑映射和流形,Lie群和Lie代数,辛几何和遍历理论.许多现代的数学理论都来自力学问题,后来才有了公理化的抽象形式,使它们很难读。Lie群在量子力学、流体力学、刚体力学、多体力学以及制导律设计、姿态控制、非线性几何控制、机构解耦等都有应用。

    那么对于一给定的力学系统,需要唯一确定其在惯性系中的位置,在几何力学中采用流形来描述,且可由有限维流形Q中的元素唯一确定,Q成为位形空间。Q的维数成为力学系统的自由度。在流形Q的开子集上取局部坐标,称为广义坐标,切向量称为广义速度,构成的集合为Q在q处的切空间。该力学系统有Lagrange函数,余切向量称为广义动量。力学系统的动能是Q上的一个黎曼度量。

一、群 

Special orthogonal group SO(3)    Special Euclidean group   SE(3)

群指的是对于某一种运算*,满足以下四个条件的集合G:
(1)封闭性
  若a,b∈G,则存在唯一确定的c∈G,使得a*b=c;
(2)结合律成立
  任意a,b,c∈G,有(a*b)*c=a*(b*c);
(3)单位元存在
  存在e∈G,对任意a∈G,满足a*e=e*a=a,称e为单位元
(4)逆元存在
  任意a∈G,存在唯一确定的b∈G, a*b=b*a=e(单位元),则称a与b互为逆元素,简称逆元,记作a^(-1)=b. 
  通常称G上的二元运算*为“乘法”,称a*b为a与b的积,并简写为ab。若群G中元素个数是有限的,则G称为有限群。否则称为无限群。有限群的元素个数称为有限群的阶。

二、流形

    粗略地说,流形是局部看近似线性空间的抽象曲面
    如果把几何形体的拓扑结构看作是完全柔软的,所有同胚映射会保持拓扑结构不变,而把解析簇看作是硬的,那么我们可以把光滑流形看作是介于两者之间的形体,其无穷小的结构是硬的,而整体结构是软的。二维曲面、欧氏空间是流形最简单的实例
    一个理想的数学上的球在足够小的区域也象一个平面,这使它成为一个流形。一个球上吊着一根线,则不能称之为流形,不满足局部简单线性要求

    一个微分流形不仅支持拓扑,而且要支持微积分。黎曼流形的思想导致了广义相对论的数学基础,使得人们能够用曲率来描述时空。

三、Lie群和Lie代数

    Lie群是具有群结构的流形,见下图,并且群中的加法运算和逆元运算是流形中的解析映射。
    Lie代数刻划了Lie群在单位元附近的局部性状,一个Lie群单位元的切空间称为这个Lie群的Lie代数。Lie代数连同一个双线性映射称为Lie括号。

Lie群SE(3)上一般力学控制系统

四、SO(3)和SE(3)

    在特殊正交群SO(3)空间中刚体绕定点转动,其构形空间R是特殊正交群SO(3),R表达成3x3转动矩阵形式,实际就是方向余弦阵。
      RRT=I
      det(R)=1

   旋转群 SO (3)是Lie群的一个实例。如果对于 A, B∈G,满足一下两个特征,则Lie群就是一个微分流形:
  (1)  对于映射 f( A,B)=AB,要求 f( A,B)∈G,并且 f 是连续可微的。
  (2)  映射A→A-1必须存在,而且连续可微。

   SO(3)满足可微条件,是微分流形。SO(3)上的Lie代数,可以通过计算Lie群上的光滑曲线的切向量来决定,用so(3)表示。其中的元素为以下形式的3x3反对称矩阵

Lie群SE(3)上一般力学控制系统

    在旋转群SO(3)的基础上引入P∈R3,描述刚体的空间位置,v是P的切空间,以4×4齐次形式表示的刚体变换矩阵是一个Lie群,同时也是一个特殊欧氏群 SE(3),该群是刚体的位形空间。Lie代数记为se(3)。se(3)通过映射与R6同构

Lie Lie 代数的理论是近代数学中的一个重要分支是挪威数学家M.S.Lie 1842-1899 在十九世纪后期创建的由于受Lagrange Abel Galois 等学者用论方法 研究代数方程求解问题得到巨大成功的启发Lie 提出了用变换的方法来研究微分方程的 求解问题及用无穷小变换来研究变换的方法近代的Lie Lie 代数理论就是在Lie 的 开创性工作的基础上发展起来的变换的概念起源于对几何图像对称性的研究虽 然历史悠久但未成为一种解决问题的系统方法这一情况到了十八世纪后期才发生了本质 的变化法国数学家J.Lagrange(1736-1813)在研究代数方程求解问题时认识到根的排列与 置换理论是解代数方程的关键所在开创了用置换的理论来研究代数方程求解问题的新阶 段在此基础上挪威数学家N.H.Abel(1802-1829)与法国数学家E.Galois(1811-1832)发展 应用了论的方法彻底解决了代数方程用代数方法求解问题关于这方面的进一步介绍 有兴趣的学者可以参看附录1 用根的置换理论解二三次代数方程 与代数方程有关的置换是有限即由有限个元素构成的对这种的研究纯属 代数问题而Lie 引进的与微分方程有关的变换则是由有限个连续参数所确定的变换所构 成的无限这种确定的元素的连续变化的参数可以看成广义的坐标所以Lie 研究的变 换除了的结构外还具有流形的结构其元素可以看成是流形上的点关于流形的概 念可参看李世雄. 波动方程的高频近似与辛几何. 第四章因而Lie 代数几何与分 析的有机结合其理论方法对近代数学的许多分支有重要的影响作用
反演控制方法与实现 《反演控制方法与实现》系统地介绍了反演控制方法的基本原理及其在不确定非线性系统中的应用。《反演控制方法与实现》共分为6章,在介绍反演法的一般理论的基础上,重点论述了抑制参数漂移的自适应反演方法,考虑非线性干扰观测器的弱抖振滑模反演方法,针对系统模型部分未知的情况,使用模糊系统神经网络估计系统中的未知部分,给出了基于智能系统的反演设计方法,同时本书介绍了系统状态未知情况下的反演设计方法。针对各种情况本书均给出了详细的理论设计方法Matlab仿真。   《反演控制方法与实现》是作者在从事控制理论与控制方法研究的基础上完成的。本书适用于从事非线性控制方法研究的工作人员研究生参考。 前言 第1章 绪论 1·1 研究的背景及意义 1·2 李雅普诺夫稳定性理论 1·2·1 李雅普诺夫意义下的稳定性 1·2·2 有界性 1·2·3 李雅普诺夫稳定性理论 1·3 微分几何理论基础 1·3·1 李导数李括号 1·3·2 微分同胚 1·3·3 控制系统的相对阶 1·3·4 输入状态线性化 1·3·5 状态反馈线性化的设计 1·4 反演法的基本原理 1·5 反演法的研究概况 1·5·1 自适应反演控制 1·5·2 鲁棒自适应反演控制 1·5·3 滑模反演控制 1·5·4 智能反演控制 1·5·5 其他反演控制方法 1·6 本书的主要研究内容 第2章 自适应反演控制方法 2·1 引言 2·2 常规自适应反演法 2·2·1 自适应反演法设计思路 2·2·2 仿真算例 2·3 抑制参数漂移的自适应反演控制 2·3·1 问题描述及预备知识 2·3·2 抑制参数漂移的自适应反演控制器设计 2·3·3 系统稳定性分析 2·3·4 仿真算例 2·4 扩展的自适应反演控制 2·4·1 问题描述 2·4·2 参数自适应律的设计 2·4·3 基于动态面的扩展反演控制器设计 2·4·4 稳定性分析 2·4·5 仿真算例 2·5 仿真算例的Matlab实现 2·5·1 节仿真算例的Matlab实现 2·5·2 节仿真算例的Matlab实现 2·5·3 节仿真算例的Matlab实现 2·6 本章 小结 第3章 不确定非线性系统的弱抖振滑模反演控制 3·1 引言 3·2 滑模控制基本原理 3·3 匹配不确定非线性系统的弱抖振滑模反演控制 3·3·1 问题描述 3·3·2 滑模反演控制器设计 3·3·3 滑模反演控制稳定性分析 3·3·4 自适应滑模反演控制器设计 3·3·5 自适应滑模反演控制稳定性分析 3·3·6 非线性干扰观测器 3·3·7 匹配不确定非线性系统的弱抖振滑模反演控制 3·3·8 仿真算例 3·4 非匹配不确定非线性系统的多滑模反演控制 3·4·1 问题描述 3·4·2 多滑模反演控制 3·4·3 基于非线性干扰观测器的多滑模反演控制 3·4·4 系统稳定性分析 3·4·5 仿真算例 3·5 仿真算例的Matlab实现 3·5·1 节弱抖振滑模反演控制的Matlab实现 3·5·2 节自适应弱抖振滑模反演控制Matlab实现 3·5·3 节多滑模反演控制Matlab实现 3·6 本章 小结 第4章 基于模糊系统的非线性系统反演控制 4·1 引言 4·2 基于模糊系统的非线性系统控制 4·2·1 问题的提出 4·2·2 模糊系统描述 4·2·3 控制器设计 4·2·4 仿真算例 4·3 节Matlab实现 4·4 本章 小结 第5章 基于神经网络的非线性系统反演控制 5·1 引言 5·2 非线性系统的鲁棒小波神经网络控制 5·2·1 问题的提出 5·2·2 小波神经网络结构 5·2·3 控制器的设计 5·2·4 稳定性分析 5·2·5 仿真 5·3 不确定非线性系统的鲁棒自适应渐近跟踪控制 5·3·1 控制目标 5·3·2 控制器设计 5·3·3 仿真算例 5·4 算例的Matlab实现 5·4·1 节算例的Matlab实现 5·4·2 节算例1的Matlab实现 5·4·3 节算例2的Matlab实现 5·5 本章 小结 第6章 基于状态观测器的反演控制器设计 6·1 滑模观测器控制器设计 6·1·1 滑模观测器设计 6·1·2 滑模反演控制器设计 6·2 仿真算例 6·3 节仿真实例的Matlab实现 6·4 本章 小结 参考文献
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值