Lie群、Lie代数

Lie群,我们基本上就是指正交群,酉群,辛群以及一些例外群。
小维数的单Lie群(Simple Lie groups of small dimension)
同一行的群都有相同的Lie代数。在1维情形,群是可交换的和非单的。
The following table lists some Lie groups with simple Lie algebras of small dimension. The groups on a given line all have the same Lie algebra. In the dimension 1 case, the groups are abelian and not simple.
Dimension[注:弱抽象为相应维数的流形][注:对应的单Lie代数]单Lie代数对应的单Lie群,不同构者以逗号分隔开
1[R,S^1]一维非紧致单连通可交换单Lie群R, 一维紧致非单连通可交换单Lie群S^1=U(1)=SO(2)=Spin(2)
 一维可交换Lie群——用矩阵(线性变换)的形式来表示绕固定轴的旋转群SO(2):
{{x'},{y'}}={{cosθ,-sinθ},{sinθ,cosθ}}{{x},{y}}={{xcosθ-ysinθ},{xcosθ-ysinθ}}
O(1,1)群还包含反射(如x->-x,y->y)相应行列式为-1。是一个连续的、单参数非紧致一维Lie群
O(1,1)使x^2-y^2不变,可用一个参数a表示群元{{cosha,sinha},{sinha,cosha}},a∈R(参数空间无界),detM=1,是群的一个二维表示。
3[S^3,RP^3][A_1]三维紧致单连通单Lie群S^3=Sp(1)=SU(2)=Spin(3),三维紧致非单连通不可交换单Lie群SO(3)=PSU(2)(Compact)
一个三维不可交换Lie群——三维转动群SO(3)也称为特殊正交群.三维空间绕固定点的一个转动,习惯用Euler角(θ,Φ,Ψ)来描述一个转动。不是单连通的流形。
g^Ψ_z表示绕z轴转Ψ角
g^θ_x表示绕x轴转θ角
g^Φ_y表示绕y轴转Φ角
于是g=g^Φ_yg^θ_xg^Ψ_z
令θ,Φ=0,即绕固定点O和固定轴z轴旋转Ψ
则{{x'},{y'}}={{cosΨ,-sinΨ},{sinΨ,cosΨ}}{{x},{y}}={{xcosΨ-ysinΨ},{xcosΨ-ysinΨ}}
{{x'},{y'},{z'}}={{cosΨ,-sinΨ,0},{sinΨ,cosΨ,0},{0,0,1}}{{x},{y},{z}}={{xcosΨ-ysinΨ},{xcosΨ-ysinΨ},{z}}
仅满足g^tg=gg^t[而不要求det g>0]的线性变换所构成的群称为O(3)——正交群。
三维转动群SO(3)是3维连通紧致单线性Lie群,相应的实Lie代数so(3)是3维1秩紧致实单Lie代数。
二维Lorentz群SO(2,1)是3维非紧致单线性Lie群,相应的实Lie代数so(2,1)是3维1秩非紧致实单Lie代数。
3 SL(2,R)=Sp(2,R),三维非紧致单Lie群SO(2,1)
O(2,1)是一个连续的、三参数非紧致三维Lie群,对易关系是:[I_1,I_2]=iI_3,[I_2,I_3]=-iI_1,[I_1,I_3]=-iI_2,

6 SL(2,C)=Sp(2,C), SO(3,1), SO(3,C)
8 SL(3,R)
8 SU(3)
8 SU(1,2)

10 Sp(2)=Spin(5), SO(5)
10 SO(4,1), Sp(2,2)
10 SO(3,2),Sp(4,R)

14 G2 (Compact)
14 G2 (Split)
15 SU(4)=Spin(6), SO(6)
15 SL(4,R), SO(3,3)
15 SU(3,1)
15 SU(2,2), SO(4,2)
15 SL(2,H), SO(5,1)

16 SL(3,C)
20 SO(5,C), Sp(4,C)
从1883年起,索非斯·李(Sophus Lie,1842.12.17-1899.2.18)等人开始研究Lie代数的结构,而且得出四个类型局部单Lie群,即射影线性群,射影正交群及射影辛群,这就是后来的典型Lie群(Lie代数)的来源。
域F上一个Lie代数g是所谓单的,即指除了g本身和{0}以外,g不含其他理想[构成Lie代数的环是单的就叫单Lie代数]。
域F上一个有限维Lie代数g是所谓半单的,即指g不含非零可解理想。
每一个有限维Lie代数g都含有惟一的最大可解理想r,就是这样一个理想, 它包含g的一切可解理想,称为g的根基。
g是半单的当且仅当它的根基r={0}。
特征为0的域上每一个半单Lie代数都是一些单Lie代数的直和。
定理:sl(l+1,C)(l>=1)是单Lie代数,其Dynkin图为A_l。
gap> for n in [1..5] do An:=SimpleLieAlgebra("A",n,Rationals);Print(An,"\n");od;
Algebra( Rationals, [ v.1, v.2, v.3 ] )
Algebra( Rationals, [ v.1, v.2, v.3, v.4, v.5, v.6, v.7, v.8 ] )
Algebra( Rationals, [ v.1, v.2, v.3, v.4, v.5, v.6, v.7, v.8, v.9, v.10, v.11, v.12, v.13, v.14, v.15 ] )
Algebra( Rationals, [ v.1, v.2, v.3, v.4, v.5, v.6, v.7, v.8, v.9, v.10, v.11, v.12, v.13, v.14, v.15, v.16, v.17,
  v.18, v.19, v.20, v.21, v.22, v.23, v.24 ] )
Algebra( Rationals, [ v.1, v.2, v.3, v.4, v.5, v.6, v.7, v.8, v.9, v.10, v.11, v.12, v.13, v.14, v.15, v.16, v.17,
  v.18, v.19, v.20, v.21, v.22, v.23, v.24, v.25, v.26, v.27, v.28, v.29, v.30, v.31, v.32, v.33, v.34, v.35 ] )
SO(3)有三个单参数子群,g_x(t),g_y(t),g_z(t),它的Lie代数是A_1,元素可表示为(a_1,a_2,a_3)={{0,-a_3,a_2},{a_3,0,-a_1},{-a_2,a_1,0}},[a,b]=a×b。
SO(4)有六个单参数子群,g_zh(t),g_yh(t),g_xh(t),g_xy(t),g_xz(t),g_yz(t),它的Lie代数是D_2,元素可表示为
(a_1,a_2,a_3,a_4,a_5,a_6)={{0,-a_1,a_2,-a_6},{a_1,0,-a_3,-a_5},{-a_2,a_3,0,-a_4},{a_6,a_5,a_4,0}},[a,b]=(-[123]_1-[456]_1,-[123]_2-[456]_2,-[123]_3-[456]_3,-[126]_1-[345]_2,-[126]_2-[345]_3,-[156]_3-[234]_2),其中,记[ijk]=([ijk]_1,[ijk]_2,[ijk]_3)=(a_i,a_j,a_k)×(b_i,b_j,b_k)。
{(a_1,a_2,a_3,0,0,0)}构成D_2的子Lie代数A_1,但{(0,0,0,a_4,a_5,a_6)}不构成D_2的子Lie代数。
{(a_1,0,0,0,a_5,a_6)}构成D_2的子Lie代数A_1,但{(0,a_2,a_3,a_4,0,0)}不构成D_2的子Lie代数。
定理:so(2l+1,C)(l>=1)是单Lie代数,其Dynkin图为B_l。
gap> for n in [2..5] do Bn:=SimpleLieAlgebra("B",n,Rationals);Print(Bn,"\n");od;
Algebra( Rationals, [ v.1, v.2, v.3, v.4, v.5, v.6, v.7, v.8, v.9, v.10 ] )
Algebra( Rationals, [ v.1, v.2, v.3, v.4, v.5, v.6, v.7, v.8, v.9, v.10, v.11, v.12, v.13, v.14, v.15, v.16, v.17,
  v.18, v.19, v.20, v.21 ] )
Algebra( Rationals, [ v.1, v.2, v.3, v.4, v.5, v.6, v.7, v.8, v.9, v.10, v.11, v.12, v.13, v.14, v.15, v.16, v.17,
  v.18, v.19, v.20, v.21, v.22, v.23, v.24, v.25, v.26, v.27, v.28, v.29, v.30, v.31, v.32, v.33, v.34, v.35, v.36 ] )
Algebra( Rationals, [ v.1, v.2, v.3, v.4, v.5, v.6, v.7, v.8, v.9, v.10, v.11, v.12, v.13, v.14, v.15, v.16, v.17,
  v.18, v.19, v.20, v.21, v.22, v.23, v.24, v.25, v.26, v.27, v.28, v.29, v.30, v.31, v.32, v.33, v.34, v.35, v.36,
  v.37, v.38, v.39, v.40, v.41, v.42, v.43, v.44, v.45, v.46, v.47, v.48, v.49, v.50, v.51, v.52, v.53, v.54, v.55 ] )
定理:sp(l,C)是单Lie代数,其Dynkin图为C_l。
gap> for n in [2..5] do Cn:=SimpleLieAlgebra("C",n,Rationals);Print(Cn,"\n");od;
Algebra( Rationals, [ v.1, v.2, v.3, v.4, v.5, v.6, v.7, v.8, v.9, v.10 ] )
Algebra( Rationals, [ v.1, v.2, v.3, v.4, v.5, v.6, v.7, v.8, v.9, v.10, v.11, v.12, v.13, v.14, v.15, v.16, v.17,
  v.18, v.19, v.20, v.21 ] )
Algebra( Rationals, [ v.1, v.2, v.3, v.4, v.5, v.6, v.7, v.8, v.9, v.10, v.11, v.12, v.13, v.14, v.15, v.16, v.17,
  v.18, v.19, v.20, v.21, v.22, v.23, v.24, v.25, v.26, v.27, v.28, v.29, v.30, v.31, v.32, v.33, v.34, v.35, v.36 ] )
Algebra( Rationals, [ v.1, v.2, v.3, v.4, v.5, v.6, v.7, v.8, v.9, v.10, v.11, v.12, v.13, v.14, v.15, v.16, v.17,
  v.18, v.19, v.20, v.21, v.22, v.23, v.24, v.25, v.26, v.27, v.28, v.29, v.30, v.31, v.32, v.33, v.34, v.35, v.36,
  v.37, v.38, v.39, v.40, v.41, v.42, v.43, v.44, v.45, v.46, v.47, v.48, v.49, v.50, v.51, v.52, v.53, v.54, v.55 ] )
定理:so(2l,C)(l>=4)是单Lie代数,其Dynkin图为D_l。
gap> for n in [4..5] do Dn:=SimpleLieAlgebra("D",n,Rationals);Print(Dn,"\n");od;
Algebra( Rationals, [ v.1, v.2, v.3, v.4, v.5, v.6, v.7, v.8, v.9, v.10, v.11, v.12, v.13, v.14, v.15, v.16, v.17,
  v.18, v.19, v.20, v.21, v.22, v.23, v.24, v.25, v.26, v.27, v.28 ] )
Algebra( Rationals, [ v.1, v.2, v.3, v.4, v.5, v.6, v.7, v.8, v.9, v.10, v.11, v.12, v.13, v.14, v.15, v.16, v.17,
  v.18, v.19, v.20, v.21, v.22, v.23, v.24, v.25, v.26, v.27, v.28, v.29, v.30, v.31, v.32, v.33, v.34, v.35, v.36,
  v.37, v.38, v.39, v.40, v.41, v.42, v.43, v.44, v.45 ] )
1888-1890年,德国数学家基林(W.Killing,1847-1923)更找出例外的单Lie群。
gap> G2:=SimpleLieAlgebra( "G", 2, Rationals );SemiSimpleType(G2);B:=KillingMatrix(Basis(G2));;G2C:=LieCenter(G2);DG2:=LieDerivedSubalgebra(G2);IsSimpleAlgebra(G2);IsFiniteDimensional(G2);IsAbelian(G2);IsLieAbelian(G2);IsLieSolvable(G2);
<Lie algebra of dimension 14 over Rationals>
"G2"
<Lie algebra of dimension 0 over Rationals>
<Lie algebra of dimension 14 over Rationals>
true
true
false
false
false
gap> F4:=SimpleLieAlgebra( "F", 4, Rationals );SemiSimpleType(F4);B:=KillingMatrix(Basis(F4));;F4C:=LieCenter(F4);DF4:=LieDerivedSubalgebra(F4);IsSimpleAlgebra(F4);IsFiniteDimensional(F4);IsAbelian(F4);IsLieAbelian(F4);IsLieSolvable(F4);
<Lie algebra of dimension 52 over Rationals>
"F4"
<Lie algebra of dimension 0 over Rationals>
<Lie algebra of dimension 52 over Rationals>
true
true
false
false
false
gap> E6:=SimpleLieAlgebra( "E", 6, Rationals );SemiSimpleType(E6);B:=KillingMatrix(Basis(E6));;E6C:=LieCenter(E6);DE6:=LieDerivedSubalgebra(E6);IsSimpleAlgebra(E6);IsFiniteDimensional(E6);IsAbelian(E6);IsLieAbelian(E6);IsLieSolvable(E6);
<Lie algebra of dimension 78 over Rationals>
"E6"
<Lie algebra of dimension 0 over Rationals>
<Lie algebra of dimension 78 over Rationals>
true
true
false
false
false
gap> E7:=SimpleLieAlgebra( "E", 7, Rationals );SemiSimpleType(E7);B:=KillingMatrix(Basis(E7));;E7C:=LieCenter(E7);DE7:=LieDerivedSubalgebra(E7);IsSimpleAlgebra(E7);IsFiniteDimensional(E7);IsAbelian(E7);IsLieAbelian(E7);IsLieSolvable(E7);
<Lie algebra of dimension 133 over Rationals>
"E7"
<Lie algebra of dimension 0 over Rationals>
<Lie algebra of dimension 133 over Rationals>
true
true
false
false
false
gap> E8:=SimpleLieAlgebra( "E", 8, Rationals );SemiSimpleType(E8);B:=KillingMatrix(Basis(E8));;E8C:=LieCenter(E8);DE8:=LieDerivedSubalgebra(E8);IsSimpleAlgebra(E8);IsFiniteDimensional(E8);IsAbelian(E8);IsLieAbelian(E8);IsLieSolvable(E8);
<Lie algebra of dimension 248 over Rationals>
"E8"
<Lie algebra of dimension 0 over Rationals>
<Lie algebra of dimension 248 over Rationals>
true
true
false
false
false







  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Lie Lie 代数的理论是近代数学中的一个重要分支是挪威数学家M.S.Lie 1842-1899 在十九世纪后期创建的由于受Lagrange Abel Galois 等学者用论方法 研究代数方程求解问题得到巨大成功的启发Lie 提出了用变换的方法来研究微分方程的 求解问题及用无穷小变换来研究变换的方法近代的Lie Lie 代数理论就是在Lie 的 开创性工作的基础上发展起来的变换的概念起源于对几何图像对称性的研究虽 然历史悠久但未成为一种解决问题的系统方法这一情况到了十八世纪后期才发生了本质 的变化法国数学家J.Lagrange(1736-1813)在研究代数方程求解问题时认识到根的排列与 置换理论是解代数方程的关键所在开创了用置换的理论来研究代数方程求解问题的新阶 段在此基础上挪威数学家N.H.Abel(1802-1829)与法国数学家E.Galois(1811-1832)发展 和应用了论的方法彻底解决了代数方程用代数方法求解问题关于这方面的进一步介绍 有兴趣的学者可以参看附录1 用根的置换理论解二三次代数方程 与代数方程有关的置换是有限即由有限个元素构成的对这种的研究纯属 代数问题而Lie 引进的与微分方程有关的变换则是由有限个连续参数所确定的变换所构 成的无限这种确定的元素的连续变化的参数可以看成广义的坐标所以Lie 研究的变 换除了的结构外还具有流形的结构其元素可以看成是流形上的点关于流形的概 念可参看李世雄. 波动方程的高频近似与辛几何. 第四章因而Lie 代数几何与分 析的有机结合其理论和方法对近代数学的许多分支有重要的影响和作用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值