已知向量e协方差矩阵,求Ae协方差矩阵

机器学习 同时被 3 个专栏收录
10 篇文章 0 订阅
11 篇文章 0 订阅
6 篇文章 0 订阅

如果已知向量\boldsymbol{e}(n行1列)的协方差矩阵,求一个矩阵\boldsymbol{A}(m行n列)乘以\boldsymbol{e}之后\boldsymbol{Ae}的协方差矩阵。

根据协方差矩阵的定义可知,\boldsymbol{e}的协方差矩阵定义:

c_{e}=\begin{bmatrix} cov(e_{1},e_{1}) & cov(e_{1},e_{2})& \hdots &cov(e_{1},e_{n}) \\ cov(e_{2},e_{1})& cov(e_{2},e_{2})& \hdots&cov(e_{2},e_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ cov(e_{n},e_{1})& cov(e_{n},e_{2})& \hdots& cov(e_{n},e_{n}) \end{bmatrix}

c_{e}中的(i,j)项为:

cov(e_{i},e_{j})

假设

\boldsymbol{A}=\begin{bmatrix} \boldsymbol{a_{1}}^T\\ \boldsymbol{a_{2}}^T\\ \vdots\\ \boldsymbol{a_{m}}^T \end{bmatrix}

因此

\boldsymbol{Ae}=\begin{bmatrix} \boldsymbol{a_{1}}^T\boldsymbol{e}\\ \boldsymbol{a_{2}}^T\boldsymbol{e}\\ \vdots\\ \boldsymbol{a_{m}}^T \boldsymbol{e}\end{bmatrix}

因此向量\boldsymbol{Ae}的协方差矩阵中的(i,j)项为:

cov(\boldsymbol{a_{i}}^T\boldsymbol{e},\boldsymbol{a_{j}}^T\boldsymbol{e})

根据协方差定义

cov(\boldsymbol{a_{i}}^T\boldsymbol{e},\boldsymbol{a_{j}}^T\boldsymbol{e})=E[(\boldsymbol{a_i}^T\boldsymbol{e}-E(\boldsymbol{a_i}^T\boldsymbol{e}))(\boldsymbol{a_j}^T\boldsymbol{e}-E(\boldsymbol{a_j}^T\boldsymbol{e}))]

===================================================

现在,我们假设已知

\boldsymbol{e} \sim N(0,\sigma^2\boldsymbol{I})

也就是

c_{e}=\begin{bmatrix} \sigma ^2 & 0& \hdots &0 \\ 0& \sigma ^2 & \hdots&0 \\ \vdots & \vdots & \vdots & \vdots \\ 0& 0& \hdots& \sigma ^2 \end{bmatrix}=\sigma^2\boldsymbol{I}

根据这个假设,我们很容易可知

E(e_{i}e_{j})=\left\{ \begin{array}{lr} \sigma ^2, & i=j \\ 0, & i\neq j. \end{array} \right.

那么

cov(\boldsymbol{a_{i}}^T\boldsymbol{e},\boldsymbol{a_{j}}^T\boldsymbol{e})=E[(\boldsymbol{a_i}^T\boldsymbol{e}-E(\boldsymbol{a_i}^T\boldsymbol{e}))(\boldsymbol{a_j}^T\boldsymbol{e}-E(\boldsymbol{a_j}^T\boldsymbol{e}))]=E[\boldsymbol{a_i}^T\boldsymbol{e}\boldsymbol{a_j}^T\boldsymbol{e}]

因为

\boldsymbol{a_j}^T\boldsymbol{e}=\boldsymbol{e}^T\boldsymbol{a_j}

因此,

cov(\boldsymbol{a_{i}}^T\boldsymbol{e},\boldsymbol{a_{j}}^T\boldsymbol{e})=E[\boldsymbol{a_i}^T\boldsymbol{e}\boldsymbol{a_j}^T\boldsymbol{e}]=E[\boldsymbol{a_i}^T\boldsymbol{e}\boldsymbol{e}^T\boldsymbol{a_j}]=E[\boldsymbol{a_i}^T\sigma ^2 \boldsymbol{I}\boldsymbol{a_j}]=\sigma ^2\boldsymbol{a_i}^T\boldsymbol{a_j}

因此,\boldsymbol{Ae}的协方差矩阵c_{Ae}

c_{Ae}=\sigma^2\boldsymbol{AA^T}

因为\boldsymbol{Ae}只是原来随机变量的线性组合,因此

 E(\boldsymbol{Ae})=\boldsymbol{0}

且仍满足正态分布。

所以:

\boldsymbol{Ae} \sim N(0,\sigma^2\boldsymbol{A^TA})

 

  • 0
    点赞
  • 1
    评论
  • 2
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值