【FinE】Ito Integral习题(2)

习题

Q1:Generalized Geometric Brownian Motion

题面
Let S ( t ) S(t) S(t) be a positive stochastic process that satisfies
d S ( t ) = α ( t ) S ( t ) d t + σ ( t ) S ( t ) d W ( t ) dS(t)=\alpha(t)S(t)dt+\sigma(t)S(t)dW(t) dS(t)=α(t)S(t)dt+σ(t)S(t)dW(t)
where α ( t ) \alpha(t) α(t) and σ ( t ) \sigma(t) σ(t) are processes adapted to the Filtration F ( t ) , t ≥ 0 \mathcal{F}(t), t\geq0 F(t),t0,compute S ( t ) S(t) S(t) through computing d ln ⁡ ( S ( t ) ) d\ln(S(t)) dln(S(t)).
解析
根据伊藤公式
ln ⁡ S t = ln ⁡ S 0 + ∫ 0 t σ s d w s + ∫ 0 t ( α s − 1 2 σ s 2 ) d s \ln S_t=\ln S_0+\int_0^t\sigma_sdw_s+\int_0^t(\alpha_s-\frac{1}{2}\sigma_s^2)ds lnSt=lnS0+0tσsdws+0t(αs21σs2)ds
方程两边同时取 exp ⁡ \exp exp指数得到
S t = S 0 exp ⁡ ( ∫ 0 t σ s d w s + ∫ 0 t ( α s − 1 2 σ s 2 ) d s ) S_t=S_0\exp(\int_0^t\sigma_sdw_s+\int_0^t(\alpha_s-\frac{1}{2}\sigma_s^2)ds) St=S0exp(0tσsdws+0t(αs21σs2)ds)

Q2:计算Brownian Motion高阶矩

题面
Let W ( t ) W(t) W(t) be a Brownian motion for 0 ≤ t ≤ T 0\leq t\leq T 0tT,Please find the expection E W 6 ( T ) \mathbb{E}W^6(T) EW6(T).
解析
伊藤积分
I ( t ) = ∫ 0 t Δ ( s ) d w ( s ) I(t)=\int_0^t\Delta(s)dw(s) I(t)=0tΔ(s)dw(s)
期望
E [ I ( t ) ] = 0 \mathbb{E}[I(t)]=0 E[I(t)]=0
方差
E [ I 2 ( t ) ] = E [ ∫ 0 t Δ 2 ( u ) d u ] = ∫ 0 t E [ Δ 2 ( u ) ] d u \mathbb{E}[I^2(t)]=\mathbb{E}[\int_0^t\Delta^2(u)du]=\int_0^t\mathbb{E}[\Delta^2(u)]du E[I2(t)]=E[0tΔ2(u)du]=0tE[Δ2(u)]du
f ( t , x ) = x 6 , f t = 0 , f x = 6 x 5 , f x x = 30 x 4 f(t, x)=x^6, f_t=0, f_x=6x^5, f_{xx}=30x^4 f(t,x)=x6,ft=0,fx=6x5,fxx=30x4
由伊藤公式
d f ( t , W ( t ) ) = d W 6 ( t ) = 6 W 5 ( t ) d W ( t ) + 1 2 ∗ 30 W 4 ( t ) d t = 6 W 5 ( t ) d W ( t ) + 15 W 4 ( t ) d t df(t, W(t))=dW^6(t)=6W^5(t)dW(t)+\frac{1}{2}*30W^4(t)dt=6W^5(t)dW(t)+15W^4(t)dt df(t,W(t))=dW6(t)=6W5(t)dW(t)+2130W4(t)dt=6W5(t)dW(t)+15W4(t)dt
[ 0 , T ] [0, T] [0,T]上积分
W 6 ( T ) − W 6 ( 0 ) = ∫ 0 T 6 W 5 ( t ) d W ( t ) ⏟ 伊藤积分期望为0 + ∫ 0 T 15 W 4 ( t ) d t W^6(T)-W^6(0)=\underbrace{\int_0^T6W^5(t)dW(t)}_{\text{伊藤积分期望为0}}+\int_0^T15W^4(t)dt W6(T)W6(0)=伊藤积分期望为0 0T6W5(t)dW(t)+0T15W4(t)dt
两边同时求数学期望
E [ W 6 ( T ) ] = 15 ∫ 0 T E W 4 ( t ) d t \mathbb{E}[W^6(T)]=15\int_0^T\mathbb{E}W^4(t)dt E[W6(T)]=150TEW4(t)dt
根据性质,如果 X ∼ N ( 0 , σ 2 ) , E [ X 4 ] = 3 σ 4 X\sim \mathcal{N}(0, \sigma^2),\mathbb{E}[X^4]=3\sigma^4 XN(0,σ2)E[X4]=3σ4.
∵ W ( t ) ∼ N ( 0 , t ) ∴ E [ W 4 ( t ) ] = 3 t 2 \because W(t)\sim \mathcal{N}(0, t)\therefore \mathbb{E}[W^4(t)]=3t^2 W(t)N(0,t)E[W4(t)]=3t2
代入积分方程得到
E [ W 6 ( T ) ] = 15 T 3 \mathbb{E}[W^6(T)]=15T^3 E[W6(T)]=15T3

Q3:Vasicek Model

题面
The Vasicek interest rate stochastic differential equation is
d R ( t ) = ( α − β R ( t ) ) d t + σ d W ( t ) dR(t)=(\alpha-\beta R(t))dt+\sigma dW(t) dR(t)=(αβR(t))dt+σdW(t)
where α , β \alpha, \beta α,β and σ \sigma σ are positive constants. Please compute R ( t ) R(t) R(t) through computing d ( e β t R ( t ) ) d(e^{\beta t}R(t)) d(eβtR(t)).
解析
f ( t , x ) = e β t x , f t = x β e β t , f x = e β t , f x x = 0 f(t, x)=e^{\beta t}x, f_t=x\beta e^{\beta t}, f_x=e^{\beta t}, f_{xx}=0 f(t,x)=eβtx,ft=xβeβt,fx=eβt,fxx=0
计算微分并代入 R ( t ) R(t) R(t)表达式得
d ( e β t R ( t ) ) = d ( f ( t , R ( t ) ) ) = R ( t ) β e β t d t + e β t d R ( t ) = α e β t d t + σ e β t d W ( t ) \begin{aligned} d(e^{\beta t}R(t))&=d(f(t, R(t)))=R(t)\beta e^{\beta t}dt+e^{\beta t}dR(t)\\ &=\alpha e^{\beta t}dt+\sigma e^{\beta t} dW(t) \end{aligned} d(eβtR(t))=d(f(t,R(t)))=R(t)βeβtdt+eβtdR(t)=αeβtdt+σeβtdW(t)
[ 0 , t ] [0, t] [0,t]上对方程两边进行积分
e β t ( R ( t ) ) − R ( 0 ) = ∫ 0 t α e β s d s + ∫ 0 t σ e β s d W ( s ) e^{\beta t}(R(t))-R(0)=\int_0^t\alpha e^{\beta s}ds+\int_0^t\sigma e^{\beta s} dW(s) eβt(R(t))R(0)=0tαeβsds+0tσeβsdW(s)
移项积分求解得到
R ( t ) = e − β t R ( 0 ) + α β ( 1 − e − β t ) + ∫ 0 t σ e − β ( t − s ) d W ( s ) R(t)=e^{-\beta t}R(0)+\frac{\alpha}{\beta}(1-e^{-\beta t})+\int_0^t\sigma e^{-\beta(t-s)}dW(s) R(t)=eβtR(0)+βα(1eβt)+0tσeβ(ts)dW(s)
可以计算一些性质,利用伊藤积分期望为0
E [ R ( t ) ] = e − β t R ( 0 ) + α β ( 1 − e − β t ) \mathbb{E}[R(t)]=e^{-\beta t}R(0)+\frac{\alpha}{\beta}(1-e^{-\beta t}) E[R(t)]=eβtR(0)+βα(1eβt)
计算极限
lim ⁡ t → ∞ E [ R ( t ) ] = α β \lim_{t\to\infty} \mathbb{E}[R(t)]=\frac{\alpha}{\beta} tlimE[R(t)]=βα
可以看出 R ( t ) R(t) R(t)具有均值回归的特性.

Q4:Stratonovich Integral

题面
Let W ( t ) , 0 ≤ t ≤ T W(t), 0\leq t\leq T W(t),0tT be a Brownian motion. Let T T T be a fixed positive number and let Π = { t 0 , t 1 , … , t n } \Pi=\{t_0, t_1, \dots, t_n\} Π={t0,t1,,tn} be a partition of [ 0 , T ] [0, T] [0,T]. For each j j j, define t j ∗ = t j + t j + 1 2 t_j^*=\frac{t_j+t_{j+1}}{2} tj=2tj+tj+1 to be the midpoint of the internal [ t j , t j + 1 ] [t_j, t_{j+1}] [tj,tj+1].

(1) Define the half-sample quadratic variation corresponding to Π \Pi Π to be
Q Π / 2 = ∑ j = 0 n − 1 [ W ( t j ∗ ) − W ( t j ) ] 2 Q_{\Pi/2}=\sum_{j=0}^{n-1}[W(t_j^*)-W(t_j)]^2 QΠ/2=j=0n1[W(tj)W(tj)]2
Show that Q Π / 2 Q_{\Pi/2} QΠ/2 has limit 1 2 T \frac{1}{2}T 21T as ∥ Π ∥ → 0 \lVert\Pi\rVert\to 0 Π0
解析
计算 E [ Q Π / 2 ] \mathbb{E}[Q_{\Pi/2}] E[QΠ/2]
E [ Q Π / 2 ] = ∑ j = 0 n − 1 E [ W ( t j ∗ ) − W ( t j ) ] 2 \mathbb{E}[Q_{\Pi/2}]=\sum_{j=0}^{n-1}\mathbb{E}[W(t_j^*)-W(t_j)]^2 E[QΠ/2]=j=0n1E[W(tj)W(tj)]2
D j = W ( t j ∗ ) − W ( t j ) D_j= W(t_j^*)-W(t_j) Dj=W(tj)W(tj)

D j = W ( t j ∗ ) − W ( t j ) ∼ N ( 0 , t j ∗ − t j ) = N ( 0 , t j + 1 − t j 2 ) D_j=W(t_j^*)-W(t_j)\sim \mathcal{N}(0, t_j^*-t_j)=\mathcal{N}(0, \frac{t_{j+1}-t_j}{2}) Dj=W(tj)W(tj)N(0,tjtj)=N(0,2tj+1tj)
∴ \therefore
E [ Q Π / 2 ] = ∑ j = 0 n − 1 E [ D j 2 ] \mathbb{E}[Q_{\Pi/2}]=\sum_{j=0}^{n-1}\mathbb{E}[D_j^2] E[QΠ/2]=j=0n1E[Dj2]
∴ \therefore
V [ D j ] = E [ D j 2 ] − E [ D j ] 2 = t j + 1 − t j 2 \mathbb{V}[D_j]=\mathbb{E}[D_j^2]-\mathbb{E}[D_j]^2=\frac{t_{j+1}-t_j}{2} V[Dj]=E[Dj2]E[Dj]2=2tj+1tj
∴ \therefore
E [ Q Π / 2 ] = ∑ j = 0 n − 1 t j + 1 − t j 2 = t n − t 0 2 = T 2 \mathbb{E}[Q_{\Pi/2}]=\sum_{j=0}^{n-1}\frac{t_{j+1}-t_j}{2}=\frac{t_n-t_0}{2}=\frac{T}{2} E[QΠ/2]=j=0n12tj+1tj=2tnt0=2T
计算方差,根据布朗运动的增量独立性
V [ Q Π / 2 ] = V [ ∑ j = 0 n − 1 D j 2 ] = ∑ j = 0 n − 1 V [ D j 2 ] \mathbb{V}[Q_{\Pi/2}]=\mathbb{V}[\sum_{j=0}^{n-1}D_j^2]=\sum_{j=0}^{n-1}\mathbb{V}[D_j^2] V[QΠ/2]=V[j=0n1Dj2]=j=0n1V[Dj2]
∵ \because
V [ D j 2 ] = E [ D j 4 ] − E 2 [ D j 2 ] = 3 4 ( t j + 1 − t j ) 2 − 1 4 ( t j + 1 − t j ) 2 = 1 2 ( t j + 1 − t j ) 2 \mathbb{V}[D_j^2]=\mathbb{E}[D_j^4]-\mathbb{E}^2[D_j^2]=\frac{3}{4}(t_{j+1}-t_j)^2-\frac{1}{4}(t_{j+1}-t_j)^2=\frac{1}{2}(t_{j+1}-t_j)^2 V[Dj2]=E[Dj4]E2[Dj2]=43(tj+1tj)241(tj+1tj)2=21(tj+1tj)2
∴ \therefore
V [ Q Π / 2 ] = 1 2 ∑ j = 0 n − 1 ( t j + 1 − t j ) 2 \mathbb{V}[Q_{\Pi/2}]=\frac{1}{2}\sum_{j=0}^{n-1}(t_{j+1}-t_j)^2 V[QΠ/2]=21j=0n1(tj+1tj)2
max ⁡ ( t j + 1 − t j ) = ∥ Π ∥ → 0 \max(t_{j+1}-t_j)=\lVert\Pi\rVert\to 0 max(tj+1tj)=Π0
V [ Q Π / 2 ] = 1 2 ∑ j = 0 n − 1 ( t j + 1 − t j ) ( t j + 1 − t j ) ≤ 1 2 ∥ Π ∥ ∑ j = 0 n − 1 ( t j + 1 − t j ) = 1 2 ∥ Π ∥ T → 0 \mathbb{V}[Q_{\Pi/2}]=\frac{1}{2}\sum_{j=0}^{n-1}(t_{j+1}-t_j)(t_{j+1}-t_j)\leq \frac{1}{2}\lVert\Pi\rVert\sum_{j=0}^{n-1}(t_{j+1}-t_j)=\frac{1}{2}\lVert\Pi\rVert T\to 0 V[QΠ/2]=21j=0n1(tj+1tj)(tj+1tj)21Πj=0n1(tj+1tj)=21ΠT0
(2) Define the Stratonovich Integral of W ( t ) W(t) W(t) with respect to W ( t ) W(t) W(t) to be
∫ 0 T W ( t ) ∘ d W ( t ) = lim ⁡ ∥ Π ∥ → 0 ∑ j = 0 n − 1 W ( t j ∗ ) [ W ( t j + 1 ) − W ( t j ) ] \int_0^TW(t)\circ dW(t)=\lim_{\lVert\Pi\rVert\to 0}\sum_{j=0}^{n-1}W(t_j^*)[W(t_{j+1})-W(t_j)] 0TW(t)dW(t)=Π0limj=0n1W(tj)[W(tj+1)W(tj)]
证明
∫ 0 T W ( t ) ∘ d W ( t ) = 1 2 W 2 ( T ) \int_0^TW(t)\circ dW(t)=\frac{1}{2}W^2(T) 0TW(t)dW(t)=21W2(T)
解析
考虑从伊藤积分(区间补全)凑出Stratonovich Integral
Ito Intrgral
I = ∫ 0 T W ( t ) d W ( t ) = ∑ j = 0 n − 1 W ( t j ) [ W ( t j ∗ ) − W ( t j ) ] + ∑ j = 0 n − 1 W ( t j ∗ ) [ W ( t j + 1 ) − W ( t j ∗ ) ] I=\int_0^TW(t)dW(t)=\sum_{j=0}^{n-1}W(t_j)[W(t_j^*)-W(t_j)]+\sum_{j=0}^{n-1}W(t_j^*)[W(t_{j+1})-W(t_j^*)] I=0TW(t)dW(t)=j=0n1W(tj)[W(tj)W(tj)]+j=0n1W(tj)[W(tj+1)W(tj)]
Stratonovich Integral
S = I − 2 ∑ j = 0 n − 1 W ( t j ) W ( t j ∗ ) + ∑ j = 0 n − 1 W 2 ( t j ) + ∑ j = 0 n − 1 W 2 ( t j ∗ ) = I + ∑ j = 0 n − 1 [ W ( t j ) − W ( t j ∗ ) ] 2 = 由 ( 1 ) 结 果 I + T 2 \begin{aligned} S&=I-2\sum_{j=0}^{n-1}W(t_j)W(t_j^*)+\sum_{j=0}^{n-1}W^2(t_j)+\sum_{j=0}^{n-1}W^2(t_j^*)\\ &=I+\sum_{j=0}^{n-1}[W(t_j)-W(t_j^*)]^2\\ &\xlongequal{由(1)结果}I+\frac{T}{2} \end{aligned} S=I2j=0n1W(tj)W(tj)+j=0n1W2(tj)+j=0n1W2(tj)=I+j=0n1[W(tj)W(tj)]2(1) I+2T
∴ \therefore
∫ 0 T W ( t ) ∘ d W ( t ) = ∫ 0 T W ( t ) d W ( t ) + T 2 \int_0^TW(t)\circ dW(t)=\int_0^TW(t)dW(t)+\frac{T}{2} 0TW(t)dW(t)=0TW(t)dW(t)+2T
求伊藤积分
f ( t , x ) = x 2 , f t = 0 , f x = 2 x , f x x = 2 f(t, x)=x^2, f_t=0, f_x=2x, f_{xx}=2 f(t,x)=x2,ft=0,fx=2x,fxx=2
d f ( t , W ( t ) ) = d [ W 2 ( t ) ] = 2 W ( t ) d W ( t ) + 1 2 ∗ 2 ∗ d t = 2 W ( t ) d W ( t ) + d t df(t, W(t))=d[W^2(t)]=2W(t)dW(t)+\frac{1}{2}*2*dt=2W(t)dW(t)+dt df(t,W(t))=d[W2(t)]=2W(t)dW(t)+212dt=2W(t)dW(t)+dt
∴ \therefore
∫ 0 T W 2 ( t ) d W ( t ) = ∫ 0 T 2 W ( t ) d W ( t ) + ∫ 0 T d t W 2 ( T ) − W 2 ( 0 ) = 2 ∫ 0 T W ( t ) d W ( t ) + ∫ 0 T d t ∫ 0 T W ( t ) d W ( t ) = W 2 ( T ) − T 2 \begin{aligned} &\int_0^TW^2(t)dW(t)=\int_0^T2W(t)dW(t)+\int_0^Tdt \\ &W^2(T)-W^2(0)=2\int_0^TW(t)dW(t)+\int_0^Tdt\\ &\int_0^TW(t)dW(t)=\frac{W^2(T)-T}{2} \end{aligned} 0TW2(t)dW(t)=0T2W(t)dW(t)+0TdtW2(T)W2(0)=20TW(t)dW(t)+0Tdt0TW(t)dW(t)=2W2(T)T
代入计算可以得到
∫ 0 T W ( t ) ∘ d W ( t ) = ∫ 0 T W ( t ) d W ( t ) + T 2 = W 2 ( T ) 2 \int_0^TW(t)\circ dW(t)=\int_0^TW(t)dW(t)+\frac{T}{2}=\frac{W^2(T)}{2} 0TW(t)dW(t)=0TW(t)dW(t)+2T=2W2(T)

参考资料

Ito Integral习题 part 2 Jerry Xu

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Quant0xff

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值