【FinE】Girsanov定理

本文探讨了概率论中的条件期望概念及其性质,包括迭代性质和测度转换。详细介绍了Radon-Nicodym导数过程,Levy定理关于鞅过程成为布朗运动的条件,以及Girsanov定理如何改变随机过程的漂移项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Conditioned Expectation

定义:概率空间 ( Ω , F , P ) (\Omega, \mathcal{F}, \mathbb{P}) (Ω,F,P) G 是域流 F \mathcal{F} F一个sub- σ \sigma σ-algebra. 设随机变量 X X X非负且可积,定义条件期望 E [ X ∣ G ] \mathbb{E}[X\mid\mathcal{G}] E[XG].
满足以下条件
(1) E [ X ∣ G ] \mathbb{E}[X\mid\mathcal{G}] E[XG] G − \mathcal{G}- G可测的.
(2) ∫ A E [ X ∣ G ] d P ( w ) = ∫ A X ( w ) d P ( w ) ⏟ Partial Averaging \int_A \mathbb{E}[X\mid \mathcal{G}]d\mathbb{P}(w)=\underbrace{\int_A X(w)d\mathbb{P}(w)}_{\text{Partial Averaging}} AE[XG]dP(w)=Partial Averaging AX(w)dP(w),对于 A ∈ G A\in \mathcal{G} AG.
(3) 如果 X X X G − \mathcal{G}- G可测的,那么
E [ X Y ∣ G ] = X E [ Y ∣ G ] \mathbb{E}[XY\mid \mathcal{G}]=X\mathbb{E}[Y\mid \mathcal{G}] E[XYG]=XE[YG]
(4) Iteration/Tower Property. 设 H \mathcal{H} H G \mathcal{G} G的sub- σ \sigma σ-algebra.
E [ E [ X ∣ G ] ∣ H ] = E [ X ∣ H ] \mathbb{E}[\mathbb{E}[X\mid \mathcal{G}]\mid \mathcal{H}]=\mathbb{E}[X\mid\mathcal{H}] E[E[XG]H]=E[XH]

考虑Radon-Nicodym导数
Z ( w ) = exp ⁡ ( − θ X ( w ) − 1 2 θ 2 ) Z(w)=\exp(-\theta X(w)-\frac{1}{2}\theta^2) Z(w)=exp(θX(w)21θ2)
其中, θ \theta θ是常数. 可以进行测度转换
( Ω , F , P ) → Q ( A ) = ∫ A Z ( w ) d P ( w ) ( Ω , F , Q ) (\Omega, \mathcal{F}, \mathbb{P})\xrightarrow{\mathbb{Q}(A)=\int_AZ(w)d\mathbb{P}(w)}(\mathbb{\Omega, \mathcal{F}, \mathbb{Q})} (Ω,F,P)Q(A)=AZ(w)dP(w) (Ω,F,Q)
特别的
X ∼ N P ( 0 , 1 ) , Y = X + θ ∼ N P ( θ , 1 ) → 测度转换 Y ∼ N Q ( 0 , 1 ) X\sim\mathcal{N}^\mathbb{P}(0, 1), Y=X+\theta\sim\mathcal{N}^{\mathbb{P}}(\theta, 1)\xrightarrow{\text{测度转换}}Y\sim\mathcal{N}^\mathbb{Q}(0, 1) XNP(0,1),Y=X+θNP(θ,1)测度转换 YNQ(0,1)

Radon-Nociodym Dervative Process

定义
Z ( t ) = E [ Z ∣ F ( t ) ] , 0 ≤ t ≤ T Z(t)=\mathbb{E}[Z\mid\mathcal{F}(t)], 0\leq t\leq T Z(t)=E[ZF(t)],0tT
为Radon-Nicodym Derivative Process.
有如下性质:
(1) Z ( t ) Z(t) Z(t)是鞅过程
0 ≤ s ≤ t 0\leq s\leq t 0st
E [ Z ( t ) ∣ F ( s ) ] = E [ E [ Z ( t ) ∣ F ( t ) ] ∣ F ( s ) ] = E [ Z ∣ F ( s ) ] = Z ( s ) \mathbb{E}[Z(t)\mid \mathcal{F}(s)]=\mathbb{E}[\mathbb{E}[Z(t)\mid \mathcal{F}(t)]\mid \mathcal{F}(s)]=\mathbb{E}[Z\mid \mathcal{F(s)}]=Z(s) E[Z(t)F(s)]=E[E[Z(t)F(t)]F(s)]=E[ZF(s)]=Z(s)
(2) Z ( w ) Z(w) Z(w)是一个R-N导数, E Q [ Y ] = E P [ Y Z ] \mathbb{E}^\mathbb{Q}[Y]=\mathbb{E}^\mathbb{P}[YZ] EQ[Y]=EP[YZ]
∵ \because
E P [ Y Z ] = E P [ E P [ Y Z ∣ F ( t ) ] ] \mathbb{E}^\mathbb{P}[YZ]=\mathbb{E}^\mathbb{P}[\mathbb{E}^\mathbb{P}[YZ\mid\mathcal{F}(t)]] EP[YZ]=EP[EP[YZF(t)]]
Y Y Y F ( t ) \mathcal{F}(t) F(t)可测
E P [ E P [ Y Z ∣ F ( t ) ] ] = E P [ Y E P [ Z ∣ F ( t ) ] ] = E P [ Y Z ( t ) ] = E Q [ Y ] \mathbb{E}^\mathbb{P}[\mathbb{E}^\mathbb{P}[YZ\mid\mathcal{F}(t)]]=\mathbb{E}^\mathbb{P}[Y\mathbb{E}^\mathbb{P}[Z\mid \mathcal{F}(t)]]=\mathbb{E}^\mathbb{P}[YZ(t)]=\mathbb{E}^\mathbb{Q}[Y] EP[EP[YZF(t)]]=EP[YEP[ZF(t)]]=EP[YZ(t)]=EQ[Y]
(3) 当 0 ≤ s ≤ t ≤ T 0\leq s\leq t\leq T 0stT. Y Y Y F ( t ) \mathcal{F}(t) F(t)可测的
E Q [ Y ∣ F ( s ) ] = 1 Z ( s ) E P [ Y Z ( t ) ∣ F ( s ) ] \mathbb{E}^\mathbb{Q}[Y\mid \mathcal{F}(s)]=\frac{1}{Z(s)}\mathbb{E}^\mathbb{P}[YZ(t)\mid \mathcal{F}(s)] EQ[YF(s)]=Z(s)1EP[YZ(t)F(s)]
∵ Z ( s ) 是 F ( s ) \because Z(s)是\mathcal{F}(s) Z(s)F(s)可测,且根据条件期望性质,可知整体是 F ( s ) \mathcal{F}(s) F(s)可测.
不妨在 Q \mathbb{Q} Q测度下等价转换,计算条件期望,对于 ∀ A ∈ F ( s ) \forall A\in \mathcal{F}(s) AF(s)
∫ A Y ( w ) d Q ( w ) = ∫ A 1 Z ( s ) E P [ Y Z ( t ) ∣ F ( s ) ] d Q ( w ) \int_AY(w)d\mathbb{Q}(w)=\int_A\frac{1}{Z(s)}\mathbb{E}^\mathbb{P}[YZ(t)\mid \mathcal{F}(s)]d\mathbb{Q}(w) AY(w)dQ(w)=AZ(s)1EP[YZ(t)F(s)]dQ(w)
计算R.H.S
∫ Ω I A ( w ) 1 Z ( s ) E P [ Y Z ( t ) ∣ F ( s ) ] d Q ( w ) = E Q [ I A ( w ) 1 Z ( s ) E P [ Y Z ( t ) ∣ F ( s ) ] ⏟ 整 体 Y ] = 逆 用 性 质 ( 2 ) E P [ I A ( w ) E P [ Y Z ( t ) ∣ F ( s ) ] ] = 期 望 迭 代 E P [ I A ( w ) Y Z ( t ) ] = 性 质 ( 2 ) E Q [ I A ( w ) Y ( w ) ] = ∫ Ω I A ( w ) Y ( w ) d Q ( w ) = ∫ A Y ( w ) d Q ( w ) = L.H.S \begin{aligned} &\int_\Omega\mathbb{I}_A(w)\frac{1}{Z(s)}\mathbb{E}^\mathbb{P}[YZ(t)\mid \mathcal{F}(s)]d\mathbb{Q}(w)\\ &=\mathbb{E}^\mathbb{Q}[\underbrace{\mathbb{I}_A(w)\frac{1}{Z(s)}\mathbb{E}^\mathbb{P}[YZ(t)\mid \mathcal{F}(s)]}_{整体Y}]\\ &\xlongequal{逆用性质(2)}\mathbb{E}^\mathbb{P}[\mathbb{I}_A(w)\mathbb{E}^\mathbb{P}[YZ(t)\mid\mathcal{F}(s)]]\\ &\xlongequal{期望迭代}\mathbb{E}^\mathbb{P}[\mathbb{I}_A(w)YZ(t)]\\ &\xlongequal{性质(2)}\mathbb{E}^\mathbb{Q}[\mathbb{I}_A(w)Y(w)]\\ &=\int_\Omega\mathbb{I}_A(w)Y(w)d\mathbb{Q}(w)\\ &=\int_AY(w)d\mathbb{Q}(w)\\ &=\text{L.H.S} \end{aligned} ΩIA(w)Z(s)1EP[YZ(t)F(s)]dQ(w)=EQ[Y IA(w)Z(s)1EP[YZ(t)F(s)]](2) EP[IA(w)EP[YZ(t)F(s)]] EP[IA(w)YZ(t)](2) EQ[IA(w)Y(w)]=ΩIA(w)Y(w)dQ(w)=AY(w)dQ(w)=L.H.S

Levy定理

定理:令 M ( t ) , t ≥ 0 M(t), t\geq 0 M(t),t0为域流 F ( t ) \mathcal{F}(t) F(t)上的鞅,假设 M ( 0 ) = 0 M(0)=0 M(0)=0 M ( t ) M(t) M(t)具有连续路径,并且 [ M , M ] ( t ) = t [M, M](t)=t [M,M](t)=t对于任意 t ≥ 0 t\geq 0 t0. 则 M ( t ) M(t) M(t)是布朗运动.

Girsanov

定理:令 W ( t ) W(t) W(t)为概率空间 ( Ω , F , P ) (\Omega, \mathcal{F}, \mathbb{P}) (Ω,F,P) 上的布朗运动,令 Θ ( t ) \Theta(t) Θ(t) 为域流 F ( t ) \mathcal{F}(t) F(t)上的Adapted Process,定义
Z ( t ) = exp ⁡ { − ∫ 0 t Θ ( u ) d W ( u ) − 1 2 ∫ 0 t Θ 2 ( u ) d u } Z(t)=\exp\{-\int_0^t\Theta(u)dW(u)-\frac{1}{2}\int_0^t\Theta^2(u)du\} Z(t)=exp{0tΘ(u)dW(u)210tΘ2(u)du}

W ~ ( t ) = W ( t ) + ∫ 0 t Θ ( u ) d u \widetilde{W}(t)=W(t)+\int_0^t\Theta(u)du W (t)=W(t)+0tΘ(u)du
Z = Z ( T ) Z=Z(T) Z=Z(T),那么 E Z = 1 , Z ≥ 0 \mathbb{E}Z=1, Z\geq 0 EZ=1,Z0. 且在 Q \mathbb{Q} Q下,对于任意 A ∈ F A\in \mathcal{F} AF
Q ( A ) = ∫ A Z ( w ) d P ( w ) \mathbb{Q}(A)=\int_AZ(w)d\mathbb{P}(w) Q(A)=AZ(w)dP(w)
则过程 W ~ ( t ) \widetilde{W}(t) W (t)是布朗运动.
证明
根据Levy定理验证二次变差 [ W ~ , W ~ ] ( t ) [\widetilde{W}, \widetilde{W}](t) [W ,W ](t).
由表达式
W ~ ( t ) = W ( t ) + ∫ 0 t Θ ( s ) d s d W ~ ( t ) = d W ( t ) + Θ ( t ) d t d W ~ ( t ) d W ~ ( t ) = d W ( t ) d W ( t ) = d t \widetilde{W}(t)=W(t)+\int_0^t\Theta(s)ds\\ d\widetilde{W}(t)=dW(t)+\Theta(t)dt\\ d\widetilde{W}(t)d\widetilde{W}(t)=dW(t)dW(t)=dt W (t)=W(t)+0tΘ(s)dsdW (t)=dW(t)+Θ(t)dtdW (t)dW (t)=dW(t)dW(t)=dt
因此 [ W ~ , W ~ ] ( t ) = t [\widetilde{W}, \widetilde{W}](t)=t [W ,W ](t)=t.

计算 E Z \mathbb{E}Z EZ

Z ( t ) = exp ⁡ { − ∫ 0 t Θ ( u ) d W ( u ) − 1 2 ∫ 0 t Θ 2 ( u ) d u ⏟ Ito Process } Z(t)=\exp\{\underbrace{-\int_0^t\Theta(u)dW(u)-\frac{1}{2}\int_0^t\Theta^2(u)du}_{\text{Ito Process}}\} Z(t)=exp{Ito Process 0tΘ(u)dW(u)210tΘ2(u)du}
f ( t , x ) = e x , f t = 0 , f x = f x x = e x f(t, x)=e^x, f_t=0, f_x=f_{xx}=e^x f(t,x)=ex,ft=0,fx=fxx=ex
d Z ( t ) = e X ( t ) d X ( t ) + 1 2 e X ( t ) d X ( t ) d X ( t ) = Z ( t ) − Θ ( t ) d W ( t ) − 1 2 Θ 2 ( t ) d t + 1 2 Z ( t ) Θ 2 ( t ) d t dZ(t)=e^{X(t)}dX(t)+\frac{1}{2}e^{X(t)}dX(t)dX(t)=Z(t)-\Theta(t)dW(t)-\frac{1}{2}\Theta^2(t)dt+\frac{1}{2}Z(t)\Theta^2(t)dt dZ(t)=eX(t)dX(t)+21eX(t)dX(t)dX(t)=Z(t)Θ(t)dW(t)21Θ2(t)dt+21Z(t)Θ2(t)dt
化简得到
d Z ( t ) = − Θ ( t ) Z ( t ) d W ( t ) dZ(t)=-\Theta(t)Z(t)dW(t) dZ(t)=Θ(t)Z(t)dW(t)
即漂移项(drift term)为0. 所以 Z ( t ) Z(t) Z(t)是一个 P − \mathbb{P}- Pmartingale( P \mathbb{P} P测度下的鞅过程).
积分得到
Z ( t ) = Z ( 0 ) − ∫ 0 t Θ ( u ) Z ( u ) d W ( u ) Z(t)=Z(0)-\int_0^t\Theta(u)Z(u)dW(u) Z(t)=Z(0)0tΘ(u)Z(u)dW(u)
计算期望
E [ Z ] = E [ Z ( T ) ] = E [ Z ( T ) ∣ F ( 0 ) ] = Z ( 0 ) = exp ⁡ { 0 } = 1. \mathbb{E}[Z]=\mathbb{E}[Z(T)]=\mathbb{E}[Z(T)\mid \mathcal{F}(0)]=Z(0)=\exp\{0\}=1. E[Z]=E[Z(T)]=E[Z(T)F(0)]=Z(0)=exp{0}=1.
证明 W ~ ( t ) \widetilde{W}(t) W (t) Q − \mathbb{Q}- Qmartingale.
E Q [ W ~ ( t ) ∣ F ( s ) ] \mathbb{E}^\mathbb{Q}[\widetilde{W}(t)\mid \mathcal{F}(s)] EQ[W (t)F(s)]
对于 0 ≤ s ≤ t 0\leq s\leq t 0st,根据性质(3)转换为 P \mathbb{P} P测度下
E Q [ W ~ ( t ) ∣ F ( s ) ] = 1 Z ( s ) E P [ W ~ ( t ) Z ( t ) ∣ F ( s ) ] \mathbb{E}^\mathbb{Q}[\widetilde{W}(t)\mid \mathcal{F}(s)]=\frac{1}{Z(s)}\mathbb{E}^\mathbb{P}[\widetilde{W}(t)Z(t)\mid \mathcal{F}(s)] EQ[W (t)F(s)]=Z(s)1EP[W (t)Z(t)F(s)]
需要证明 W ~ ( t ) Z ( t ) \widetilde{W}(t)Z(t) W (t)Z(t) P − \mathbb{P}- Pmartingale.
计算微分
d ( W ~ ( t ) Z ( t ) ) = Z ( t ) d W ~ ( t ) + W ~ ( t ) d Z ( t ) + d Z ( t ) d W ~ ( t ) = Z ( t ) [ d W ( t ) + Θ ( t ) d t ] + W ~ ( t ) [ − Θ ( t ) Z ( t ) d W ( t ) ] + [ − Θ ( t ) Z ( t ) d W ( t ) ] [ d W ( t ) + Θ ( t ) d t ] = Z ( t ) ( 1 − W ~ ( t ) Θ ( t ) ) d W ( t ) \begin{aligned} d(\widetilde{W}(t)Z(t))&=Z(t)d\widetilde{W}(t)+\widetilde{W}(t)dZ(t)+dZ(t)d\widetilde{W}(t)\\ &=Z(t)[dW(t)+\Theta(t)dt]+\widetilde{W}(t)[-\Theta(t)Z(t)dW(t)]+[-\Theta(t)Z(t)dW(t)][dW(t)+\Theta(t)dt]\\ &=Z(t)(1-\widetilde{W}(t)\Theta(t))dW(t) \end{aligned} d(W (t)Z(t))=Z(t)dW (t)+W (t)dZ(t)+dZ(t)dW (t)=Z(t)[dW(t)+Θ(t)dt]+W (t)[Θ(t)Z(t)dW(t)]+[Θ(t)Z(t)dW(t)][dW(t)+Θ(t)dt]=Z(t)(1W (t)Θ(t))dW(t)
可以发现 d ( W ~ ( t ) Z ( t ) ) d(\widetilde{W}(t)Z(t)) d(W (t)Z(t))中没有漂移项,因此 W ~ ( t ) Z ( t ) \widetilde{W}(t)Z(t) W (t)Z(t) P − \mathbb{P}- Pmartingale.
根据鞅的性质可得
E [ W ~ ( t ) ∣ F ( s ) ] = 1 Z ( s ) E P [ W ~ ( t ) Z ( t ) ∣ F ( s ) ] = 1 Z ( s ) W ~ ( s ) Z ( s ) = W ~ ( s ) \mathbb{E}[\widetilde{W}(t)\mid \mathcal{F}(s)]=\frac{1}{Z(s)}\mathbb{E}^\mathbb{P}[\widetilde{W}(t)Z(t)\mid \mathcal{F}(s)]=\frac{1}{Z(s)}\widetilde{W}(s)Z(s)=\widetilde{W}(s) E[W (t)F(s)]=Z(s)1EP[W (t)Z(t)F(s)]=Z(s)1W (s)Z(s)=W (s)
W ~ ( t ) \widetilde{W}(t) W (t) Q − \mathbb{Q}- Qmatingale.

Original Version of Girsanov

d X ( t ) = f ( X ( t ) ) d t + σ ( X ( t ) ) d W ( t ) dX(t)=f(X(t))dt+\sigma(X(t))dW(t) dX(t)=f(X(t))dt+σ(X(t))dW(t)
f ∗ ( x ) f^*(x) f(x)是一个新的drift function,假设 f ∗ ( x ) − f ( x ) σ ( x ) \frac{f^*(x)-f(x)}{\sigma(x)} σ(x)f(x)f(x)有界.
定义测度 P ∗ \mathbb{P}^* P
d P ∗ d P ( w ) ∣ F t = exp ⁡ { − 1 2 ∫ 0 t ( f ∗ ( x s ) − f ( x s ) σ ( x s ) ) 2 d s + ∫ 0 t f ∗ ( x s ) − f ( x 0 ) σ ( x 0 ) d W s } \frac{d\mathbb{P}^*}{d\mathbb{P}}(w)\bigg |_{\mathcal{F}_t}=\exp\{-\frac{1}{2}\int_0^t(\frac{f^*(x_s)-f(x_s)}{\sigma(x_s)})^2ds+\int_0^t\frac{f^*(x_s)-f(x_0)}{\sigma(x_0)}dW_s\} dPdP(w)Ft=exp{210t(σ(xs)f(xs)f(xs))2ds+0tσ(x0)f(xs)f(x0)dWs}
那么, P ∗ \mathbb{P}^* P和概率测度 P \mathbb{P} P等价.
并且, W ∗ W^* W过程满足
d W ∗ = − f ∗ ( x t ) − f ( x t ) σ ( x t ) d t + d W t dW^*=-\frac{f^*(x_t)-f(x_t)}{\sigma(x_t)}dt+dW_t dW=σ(xt)f(xt)f(xt)dt+dWt
是概率测度 P ∗ \mathbb{P}^* P下的布朗运动并且
d X t = f ∗ ( X t ) d t + Δ ( X t ) d W ∗ ( t ) dX_t=f^*(X_t)dt+\Delta(X_t)dW^*(t) dXt=f(Xt)dt+Δ(Xt)dW(t)

参考资料

Girsanov part 5&6 Jerry Xu

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Quant0xff

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值