导航
Conditioned Expectation
定义:概率空间
(
Ω
,
F
,
P
)
(\Omega, \mathcal{F}, \mathbb{P})
(Ω,F,P) G 是域流
F
\mathcal{F}
F一个sub-
σ
\sigma
σ-algebra. 设随机变量
X
X
X非负且可积,定义条件期望
E
[
X
∣
G
]
\mathbb{E}[X\mid\mathcal{G}]
E[X∣G].
满足以下条件
(1)
E
[
X
∣
G
]
\mathbb{E}[X\mid\mathcal{G}]
E[X∣G]是
G
−
\mathcal{G}-
G−可测的.
(2)
∫
A
E
[
X
∣
G
]
d
P
(
w
)
=
∫
A
X
(
w
)
d
P
(
w
)
⏟
Partial Averaging
\int_A \mathbb{E}[X\mid \mathcal{G}]d\mathbb{P}(w)=\underbrace{\int_A X(w)d\mathbb{P}(w)}_{\text{Partial Averaging}}
∫AE[X∣G]dP(w)=Partial Averaging
∫AX(w)dP(w),对于
A
∈
G
A\in \mathcal{G}
A∈G.
(3) 如果
X
X
X是
G
−
\mathcal{G}-
G−可测的,那么
E
[
X
Y
∣
G
]
=
X
E
[
Y
∣
G
]
\mathbb{E}[XY\mid \mathcal{G}]=X\mathbb{E}[Y\mid \mathcal{G}]
E[XY∣G]=XE[Y∣G]
(4) Iteration/Tower Property. 设
H
\mathcal{H}
H是
G
\mathcal{G}
G的sub-
σ
\sigma
σ-algebra.
E
[
E
[
X
∣
G
]
∣
H
]
=
E
[
X
∣
H
]
\mathbb{E}[\mathbb{E}[X\mid \mathcal{G}]\mid \mathcal{H}]=\mathbb{E}[X\mid\mathcal{H}]
E[E[X∣G]∣H]=E[X∣H]
例:
考虑Radon-Nicodym导数
Z
(
w
)
=
exp
(
−
θ
X
(
w
)
−
1
2
θ
2
)
Z(w)=\exp(-\theta X(w)-\frac{1}{2}\theta^2)
Z(w)=exp(−θX(w)−21θ2)
其中,
θ
\theta
θ是常数. 可以进行测度转换
(
Ω
,
F
,
P
)
→
Q
(
A
)
=
∫
A
Z
(
w
)
d
P
(
w
)
(
Ω
,
F
,
Q
)
(\Omega, \mathcal{F}, \mathbb{P})\xrightarrow{\mathbb{Q}(A)=\int_AZ(w)d\mathbb{P}(w)}(\mathbb{\Omega, \mathcal{F}, \mathbb{Q})}
(Ω,F,P)Q(A)=∫AZ(w)dP(w)(Ω,F,Q)
特别的
X
∼
N
P
(
0
,
1
)
,
Y
=
X
+
θ
∼
N
P
(
θ
,
1
)
→
测度转换
Y
∼
N
Q
(
0
,
1
)
X\sim\mathcal{N}^\mathbb{P}(0, 1), Y=X+\theta\sim\mathcal{N}^{\mathbb{P}}(\theta, 1)\xrightarrow{\text{测度转换}}Y\sim\mathcal{N}^\mathbb{Q}(0, 1)
X∼NP(0,1),Y=X+θ∼NP(θ,1)测度转换Y∼NQ(0,1)
Radon-Nociodym Dervative Process
定义:
Z
(
t
)
=
E
[
Z
∣
F
(
t
)
]
,
0
≤
t
≤
T
Z(t)=\mathbb{E}[Z\mid\mathcal{F}(t)], 0\leq t\leq T
Z(t)=E[Z∣F(t)],0≤t≤T
为Radon-Nicodym Derivative Process.
有如下性质:
(1)
Z
(
t
)
Z(t)
Z(t)是鞅过程
令
0
≤
s
≤
t
0\leq s\leq t
0≤s≤t
E
[
Z
(
t
)
∣
F
(
s
)
]
=
E
[
E
[
Z
(
t
)
∣
F
(
t
)
]
∣
F
(
s
)
]
=
E
[
Z
∣
F
(
s
)
]
=
Z
(
s
)
\mathbb{E}[Z(t)\mid \mathcal{F}(s)]=\mathbb{E}[\mathbb{E}[Z(t)\mid \mathcal{F}(t)]\mid \mathcal{F}(s)]=\mathbb{E}[Z\mid \mathcal{F(s)}]=Z(s)
E[Z(t)∣F(s)]=E[E[Z(t)∣F(t)]∣F(s)]=E[Z∣F(s)]=Z(s)
(2)
Z
(
w
)
Z(w)
Z(w)是一个R-N导数,
E
Q
[
Y
]
=
E
P
[
Y
Z
]
\mathbb{E}^\mathbb{Q}[Y]=\mathbb{E}^\mathbb{P}[YZ]
EQ[Y]=EP[YZ]
∵
\because
∵
E
P
[
Y
Z
]
=
E
P
[
E
P
[
Y
Z
∣
F
(
t
)
]
]
\mathbb{E}^\mathbb{P}[YZ]=\mathbb{E}^\mathbb{P}[\mathbb{E}^\mathbb{P}[YZ\mid\mathcal{F}(t)]]
EP[YZ]=EP[EP[YZ∣F(t)]]
当
Y
Y
Y是
F
(
t
)
\mathcal{F}(t)
F(t)可测
E
P
[
E
P
[
Y
Z
∣
F
(
t
)
]
]
=
E
P
[
Y
E
P
[
Z
∣
F
(
t
)
]
]
=
E
P
[
Y
Z
(
t
)
]
=
E
Q
[
Y
]
\mathbb{E}^\mathbb{P}[\mathbb{E}^\mathbb{P}[YZ\mid\mathcal{F}(t)]]=\mathbb{E}^\mathbb{P}[Y\mathbb{E}^\mathbb{P}[Z\mid \mathcal{F}(t)]]=\mathbb{E}^\mathbb{P}[YZ(t)]=\mathbb{E}^\mathbb{Q}[Y]
EP[EP[YZ∣F(t)]]=EP[YEP[Z∣F(t)]]=EP[YZ(t)]=EQ[Y]
(3) 当
0
≤
s
≤
t
≤
T
0\leq s\leq t\leq T
0≤s≤t≤T.
Y
Y
Y是
F
(
t
)
\mathcal{F}(t)
F(t)可测的
E
Q
[
Y
∣
F
(
s
)
]
=
1
Z
(
s
)
E
P
[
Y
Z
(
t
)
∣
F
(
s
)
]
\mathbb{E}^\mathbb{Q}[Y\mid \mathcal{F}(s)]=\frac{1}{Z(s)}\mathbb{E}^\mathbb{P}[YZ(t)\mid \mathcal{F}(s)]
EQ[Y∣F(s)]=Z(s)1EP[YZ(t)∣F(s)]
∵
Z
(
s
)
是
F
(
s
)
\because Z(s)是\mathcal{F}(s)
∵Z(s)是F(s)可测,且根据条件期望性质,可知整体是
F
(
s
)
\mathcal{F}(s)
F(s)可测.
不妨在
Q
\mathbb{Q}
Q测度下等价转换,计算条件期望,对于
∀
A
∈
F
(
s
)
\forall A\in \mathcal{F}(s)
∀A∈F(s)
∫
A
Y
(
w
)
d
Q
(
w
)
=
∫
A
1
Z
(
s
)
E
P
[
Y
Z
(
t
)
∣
F
(
s
)
]
d
Q
(
w
)
\int_AY(w)d\mathbb{Q}(w)=\int_A\frac{1}{Z(s)}\mathbb{E}^\mathbb{P}[YZ(t)\mid \mathcal{F}(s)]d\mathbb{Q}(w)
∫AY(w)dQ(w)=∫AZ(s)1EP[YZ(t)∣F(s)]dQ(w)
计算R.H.S
∫
Ω
I
A
(
w
)
1
Z
(
s
)
E
P
[
Y
Z
(
t
)
∣
F
(
s
)
]
d
Q
(
w
)
=
E
Q
[
I
A
(
w
)
1
Z
(
s
)
E
P
[
Y
Z
(
t
)
∣
F
(
s
)
]
⏟
整
体
Y
]
=
逆
用
性
质
(
2
)
E
P
[
I
A
(
w
)
E
P
[
Y
Z
(
t
)
∣
F
(
s
)
]
]
=
期
望
迭
代
E
P
[
I
A
(
w
)
Y
Z
(
t
)
]
=
性
质
(
2
)
E
Q
[
I
A
(
w
)
Y
(
w
)
]
=
∫
Ω
I
A
(
w
)
Y
(
w
)
d
Q
(
w
)
=
∫
A
Y
(
w
)
d
Q
(
w
)
=
L.H.S
\begin{aligned} &\int_\Omega\mathbb{I}_A(w)\frac{1}{Z(s)}\mathbb{E}^\mathbb{P}[YZ(t)\mid \mathcal{F}(s)]d\mathbb{Q}(w)\\ &=\mathbb{E}^\mathbb{Q}[\underbrace{\mathbb{I}_A(w)\frac{1}{Z(s)}\mathbb{E}^\mathbb{P}[YZ(t)\mid \mathcal{F}(s)]}_{整体Y}]\\ &\xlongequal{逆用性质(2)}\mathbb{E}^\mathbb{P}[\mathbb{I}_A(w)\mathbb{E}^\mathbb{P}[YZ(t)\mid\mathcal{F}(s)]]\\ &\xlongequal{期望迭代}\mathbb{E}^\mathbb{P}[\mathbb{I}_A(w)YZ(t)]\\ &\xlongequal{性质(2)}\mathbb{E}^\mathbb{Q}[\mathbb{I}_A(w)Y(w)]\\ &=\int_\Omega\mathbb{I}_A(w)Y(w)d\mathbb{Q}(w)\\ &=\int_AY(w)d\mathbb{Q}(w)\\ &=\text{L.H.S} \end{aligned}
∫ΩIA(w)Z(s)1EP[YZ(t)∣F(s)]dQ(w)=EQ[整体Y
IA(w)Z(s)1EP[YZ(t)∣F(s)]]逆用性质(2)EP[IA(w)EP[YZ(t)∣F(s)]]期望迭代EP[IA(w)YZ(t)]性质(2)EQ[IA(w)Y(w)]=∫ΩIA(w)Y(w)dQ(w)=∫AY(w)dQ(w)=L.H.S
Levy定理
定理:令 M ( t ) , t ≥ 0 M(t), t\geq 0 M(t),t≥0为域流 F ( t ) \mathcal{F}(t) F(t)上的鞅,假设 M ( 0 ) = 0 M(0)=0 M(0)=0, M ( t ) M(t) M(t)具有连续路径,并且 [ M , M ] ( t ) = t [M, M](t)=t [M,M](t)=t对于任意 t ≥ 0 t\geq 0 t≥0. 则 M ( t ) M(t) M(t)是布朗运动.
Girsanov
定理:令
W
(
t
)
W(t)
W(t)为概率空间
(
Ω
,
F
,
P
)
(\Omega, \mathcal{F}, \mathbb{P})
(Ω,F,P) 上的布朗运动,令
Θ
(
t
)
\Theta(t)
Θ(t) 为域流
F
(
t
)
\mathcal{F}(t)
F(t)上的Adapted Process,定义
Z
(
t
)
=
exp
{
−
∫
0
t
Θ
(
u
)
d
W
(
u
)
−
1
2
∫
0
t
Θ
2
(
u
)
d
u
}
Z(t)=\exp\{-\int_0^t\Theta(u)dW(u)-\frac{1}{2}\int_0^t\Theta^2(u)du\}
Z(t)=exp{−∫0tΘ(u)dW(u)−21∫0tΘ2(u)du}
令
W
~
(
t
)
=
W
(
t
)
+
∫
0
t
Θ
(
u
)
d
u
\widetilde{W}(t)=W(t)+\int_0^t\Theta(u)du
W
(t)=W(t)+∫0tΘ(u)du
设
Z
=
Z
(
T
)
Z=Z(T)
Z=Z(T),那么
E
Z
=
1
,
Z
≥
0
\mathbb{E}Z=1, Z\geq 0
EZ=1,Z≥0. 且在
Q
\mathbb{Q}
Q下,对于任意
A
∈
F
A\in \mathcal{F}
A∈F
Q
(
A
)
=
∫
A
Z
(
w
)
d
P
(
w
)
\mathbb{Q}(A)=\int_AZ(w)d\mathbb{P}(w)
Q(A)=∫AZ(w)dP(w)
则过程
W
~
(
t
)
\widetilde{W}(t)
W
(t)是布朗运动.
证明:
根据Levy定理验证二次变差
[
W
~
,
W
~
]
(
t
)
[\widetilde{W}, \widetilde{W}](t)
[W
,W
](t).
由表达式
W
~
(
t
)
=
W
(
t
)
+
∫
0
t
Θ
(
s
)
d
s
d
W
~
(
t
)
=
d
W
(
t
)
+
Θ
(
t
)
d
t
d
W
~
(
t
)
d
W
~
(
t
)
=
d
W
(
t
)
d
W
(
t
)
=
d
t
\widetilde{W}(t)=W(t)+\int_0^t\Theta(s)ds\\ d\widetilde{W}(t)=dW(t)+\Theta(t)dt\\ d\widetilde{W}(t)d\widetilde{W}(t)=dW(t)dW(t)=dt
W
(t)=W(t)+∫0tΘ(s)dsdW
(t)=dW(t)+Θ(t)dtdW
(t)dW
(t)=dW(t)dW(t)=dt
因此
[
W
~
,
W
~
]
(
t
)
=
t
[\widetilde{W}, \widetilde{W}](t)=t
[W
,W
](t)=t.
计算
E
Z
\mathbb{E}Z
EZ
由
Z
(
t
)
=
exp
{
−
∫
0
t
Θ
(
u
)
d
W
(
u
)
−
1
2
∫
0
t
Θ
2
(
u
)
d
u
⏟
Ito Process
}
Z(t)=\exp\{\underbrace{-\int_0^t\Theta(u)dW(u)-\frac{1}{2}\int_0^t\Theta^2(u)du}_{\text{Ito Process}}\}
Z(t)=exp{Ito Process
−∫0tΘ(u)dW(u)−21∫0tΘ2(u)du}
令
f
(
t
,
x
)
=
e
x
,
f
t
=
0
,
f
x
=
f
x
x
=
e
x
f(t, x)=e^x, f_t=0, f_x=f_{xx}=e^x
f(t,x)=ex,ft=0,fx=fxx=ex
d
Z
(
t
)
=
e
X
(
t
)
d
X
(
t
)
+
1
2
e
X
(
t
)
d
X
(
t
)
d
X
(
t
)
=
Z
(
t
)
−
Θ
(
t
)
d
W
(
t
)
−
1
2
Θ
2
(
t
)
d
t
+
1
2
Z
(
t
)
Θ
2
(
t
)
d
t
dZ(t)=e^{X(t)}dX(t)+\frac{1}{2}e^{X(t)}dX(t)dX(t)=Z(t)-\Theta(t)dW(t)-\frac{1}{2}\Theta^2(t)dt+\frac{1}{2}Z(t)\Theta^2(t)dt
dZ(t)=eX(t)dX(t)+21eX(t)dX(t)dX(t)=Z(t)−Θ(t)dW(t)−21Θ2(t)dt+21Z(t)Θ2(t)dt
化简得到
d
Z
(
t
)
=
−
Θ
(
t
)
Z
(
t
)
d
W
(
t
)
dZ(t)=-\Theta(t)Z(t)dW(t)
dZ(t)=−Θ(t)Z(t)dW(t)
即漂移项(drift term)为0. 所以
Z
(
t
)
Z(t)
Z(t)是一个
P
−
\mathbb{P}-
P−martingale(
P
\mathbb{P}
P测度下的鞅过程).
积分得到
Z
(
t
)
=
Z
(
0
)
−
∫
0
t
Θ
(
u
)
Z
(
u
)
d
W
(
u
)
Z(t)=Z(0)-\int_0^t\Theta(u)Z(u)dW(u)
Z(t)=Z(0)−∫0tΘ(u)Z(u)dW(u)
计算期望
E
[
Z
]
=
E
[
Z
(
T
)
]
=
E
[
Z
(
T
)
∣
F
(
0
)
]
=
Z
(
0
)
=
exp
{
0
}
=
1.
\mathbb{E}[Z]=\mathbb{E}[Z(T)]=\mathbb{E}[Z(T)\mid \mathcal{F}(0)]=Z(0)=\exp\{0\}=1.
E[Z]=E[Z(T)]=E[Z(T)∣F(0)]=Z(0)=exp{0}=1.
证明
W
~
(
t
)
\widetilde{W}(t)
W
(t)是
Q
−
\mathbb{Q}-
Q−martingale.
E
Q
[
W
~
(
t
)
∣
F
(
s
)
]
\mathbb{E}^\mathbb{Q}[\widetilde{W}(t)\mid \mathcal{F}(s)]
EQ[W
(t)∣F(s)]
对于
0
≤
s
≤
t
0\leq s\leq t
0≤s≤t,根据性质(3)转换为
P
\mathbb{P}
P测度下
E
Q
[
W
~
(
t
)
∣
F
(
s
)
]
=
1
Z
(
s
)
E
P
[
W
~
(
t
)
Z
(
t
)
∣
F
(
s
)
]
\mathbb{E}^\mathbb{Q}[\widetilde{W}(t)\mid \mathcal{F}(s)]=\frac{1}{Z(s)}\mathbb{E}^\mathbb{P}[\widetilde{W}(t)Z(t)\mid \mathcal{F}(s)]
EQ[W
(t)∣F(s)]=Z(s)1EP[W
(t)Z(t)∣F(s)]
需要证明
W
~
(
t
)
Z
(
t
)
\widetilde{W}(t)Z(t)
W
(t)Z(t)是
P
−
\mathbb{P}-
P−martingale.
计算微分
d
(
W
~
(
t
)
Z
(
t
)
)
=
Z
(
t
)
d
W
~
(
t
)
+
W
~
(
t
)
d
Z
(
t
)
+
d
Z
(
t
)
d
W
~
(
t
)
=
Z
(
t
)
[
d
W
(
t
)
+
Θ
(
t
)
d
t
]
+
W
~
(
t
)
[
−
Θ
(
t
)
Z
(
t
)
d
W
(
t
)
]
+
[
−
Θ
(
t
)
Z
(
t
)
d
W
(
t
)
]
[
d
W
(
t
)
+
Θ
(
t
)
d
t
]
=
Z
(
t
)
(
1
−
W
~
(
t
)
Θ
(
t
)
)
d
W
(
t
)
\begin{aligned} d(\widetilde{W}(t)Z(t))&=Z(t)d\widetilde{W}(t)+\widetilde{W}(t)dZ(t)+dZ(t)d\widetilde{W}(t)\\ &=Z(t)[dW(t)+\Theta(t)dt]+\widetilde{W}(t)[-\Theta(t)Z(t)dW(t)]+[-\Theta(t)Z(t)dW(t)][dW(t)+\Theta(t)dt]\\ &=Z(t)(1-\widetilde{W}(t)\Theta(t))dW(t) \end{aligned}
d(W
(t)Z(t))=Z(t)dW
(t)+W
(t)dZ(t)+dZ(t)dW
(t)=Z(t)[dW(t)+Θ(t)dt]+W
(t)[−Θ(t)Z(t)dW(t)]+[−Θ(t)Z(t)dW(t)][dW(t)+Θ(t)dt]=Z(t)(1−W
(t)Θ(t))dW(t)
可以发现
d
(
W
~
(
t
)
Z
(
t
)
)
d(\widetilde{W}(t)Z(t))
d(W
(t)Z(t))中没有漂移项,因此
W
~
(
t
)
Z
(
t
)
\widetilde{W}(t)Z(t)
W
(t)Z(t)是
P
−
\mathbb{P}-
P−martingale.
根据鞅的性质可得
E
[
W
~
(
t
)
∣
F
(
s
)
]
=
1
Z
(
s
)
E
P
[
W
~
(
t
)
Z
(
t
)
∣
F
(
s
)
]
=
1
Z
(
s
)
W
~
(
s
)
Z
(
s
)
=
W
~
(
s
)
\mathbb{E}[\widetilde{W}(t)\mid \mathcal{F}(s)]=\frac{1}{Z(s)}\mathbb{E}^\mathbb{P}[\widetilde{W}(t)Z(t)\mid \mathcal{F}(s)]=\frac{1}{Z(s)}\widetilde{W}(s)Z(s)=\widetilde{W}(s)
E[W
(t)∣F(s)]=Z(s)1EP[W
(t)Z(t)∣F(s)]=Z(s)1W
(s)Z(s)=W
(s)
即
W
~
(
t
)
\widetilde{W}(t)
W
(t)是
Q
−
\mathbb{Q}-
Q−matingale.
Original Version of Girsanov
d
X
(
t
)
=
f
(
X
(
t
)
)
d
t
+
σ
(
X
(
t
)
)
d
W
(
t
)
dX(t)=f(X(t))dt+\sigma(X(t))dW(t)
dX(t)=f(X(t))dt+σ(X(t))dW(t)
令
f
∗
(
x
)
f^*(x)
f∗(x)是一个新的drift function,假设
f
∗
(
x
)
−
f
(
x
)
σ
(
x
)
\frac{f^*(x)-f(x)}{\sigma(x)}
σ(x)f∗(x)−f(x)有界.
定义测度
P
∗
\mathbb{P}^*
P∗
d
P
∗
d
P
(
w
)
∣
F
t
=
exp
{
−
1
2
∫
0
t
(
f
∗
(
x
s
)
−
f
(
x
s
)
σ
(
x
s
)
)
2
d
s
+
∫
0
t
f
∗
(
x
s
)
−
f
(
x
0
)
σ
(
x
0
)
d
W
s
}
\frac{d\mathbb{P}^*}{d\mathbb{P}}(w)\bigg |_{\mathcal{F}_t}=\exp\{-\frac{1}{2}\int_0^t(\frac{f^*(x_s)-f(x_s)}{\sigma(x_s)})^2ds+\int_0^t\frac{f^*(x_s)-f(x_0)}{\sigma(x_0)}dW_s\}
dPdP∗(w)∣∣∣∣Ft=exp{−21∫0t(σ(xs)f∗(xs)−f(xs))2ds+∫0tσ(x0)f∗(xs)−f(x0)dWs}
那么,
P
∗
\mathbb{P}^*
P∗和概率测度
P
\mathbb{P}
P等价.
并且,
W
∗
W^*
W∗过程满足
d
W
∗
=
−
f
∗
(
x
t
)
−
f
(
x
t
)
σ
(
x
t
)
d
t
+
d
W
t
dW^*=-\frac{f^*(x_t)-f(x_t)}{\sigma(x_t)}dt+dW_t
dW∗=−σ(xt)f∗(xt)−f(xt)dt+dWt
是概率测度
P
∗
\mathbb{P}^*
P∗下的布朗运动并且
d
X
t
=
f
∗
(
X
t
)
d
t
+
Δ
(
X
t
)
d
W
∗
(
t
)
dX_t=f^*(X_t)dt+\Delta(X_t)dW^*(t)
dXt=f∗(Xt)dt+Δ(Xt)dW∗(t)