测度定义_B-S模型下的PDE和风险中性测度方法

本文深入探讨Black-Scholes模型,通过偏微分方程(PDE)和风险中性测度方法求解期权定价。首先,通过构建资产组合实现对冲,然后利用伊藤公式建立期权价值的PDE。接着,介绍Girsanov定理进行测度变换,将问题转化为风险中性测度下的条件期望。最后,讨论两种方法的统一性,证明借助Feynman-Kac定理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ae456d9736c7bbed88eda5735a39982c.png

本篇将解决Black Scholes公式的求解方法。在上一篇文章

呦呦Ruming:From Brownian Motion to Stochastic Integral​zhuanlan.zhihu.com
c50e46e797d5f02f67b3568e4c998c30.png

中我们介绍了布朗运动与伊藤公式,通过这些数学公式我们将推导Black-Scholes估值公式。

Part 1. 利用资产组合对冲期权

在此部分我们将通过偏微分方程的方法来求解BS公式,这种方法的核心思想与之前离散情况下二叉树模型是类似的,即构造一个资产组合使得到期时能够完全对冲期权的风险,再通过资产组合的价格来对期权进行定价。(对冲策略的构造,可见

呦呦Ruming:美式期权的对冲​zhuanlan.zhihu.com
67d7bc23f626748ba8d06d0690915272.png

def 1.1 (广义几何布朗运动)假设有W(t),

,是一个布朗运动,
是其对应的域流,假设
是适应的随机过程,定义一个Ito过程X(t),其满足:

容易知道

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值