Fourier变换的乘积定理及其详细证明过程

Fourier变换的乘积定理及其证明过程

Fourier变换的乘积定理是进行有关Fourier相关运算的有力工具。借助它,可以让有的频域乘积计算或时间域计算有效转化,避开复杂的基于定义的计算过程,使得计算过程快捷方便,本博文在此,对Fourier变换的乘积定理及其证明过程进行分析。

一、Fourier变换的乘积定理

F 1 ( ω ) = F [ f 1 ( t ) ] , F 2 ( ω ) = F [ f 2 ( t ) ] F_1(\omega)=\mathscr{F}\left[f_1(t)\right], F_2(\omega)=\mathscr{F}\left[f_2(t)\right] F1(ω)=F[f1(t)],F2(ω)=F[f2(t)]

∫ − ∞ + ∞ f 1 ( t ) ‾ f 2 ( t ) d t = 1 2 π ∫ − ∞ + ∞ F 1 ( ω ) ‾ F 2 ( ω ) d ω , ∫ − ∞ + ∞ f 1 ( t ) f 2 ( t ) ‾ d t = 1 2 π ∫ − ∞ + ∞ F 1 ( ω ) F 2 ( ω ) ‾ d ω , } (5) \left. \begin{array}{l}\int_{ - \infty }^{ + \infty } {\overline {{f_1}(t)} } {f_2}(t){\rm{d}}t = \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty } {\overline {{F_1}(\omega )} } {F_2}(\omega ){\rm{d}}\omega ,\\\\\int_{ - \infty }^{ + \infty } {{f_1}} (t)\overline {{f_2}(t)} {\rm{d}}t = \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty } {{F_1}} (\omega )\overline {{F_2}(\omega )} {\rm{d}}\omega ,\end{array} \right\} \tag5 +f1(t)f2(t)dt=2π1+F1(ω)F2(ω)dω,+f1(t)f2(t)dt=2π1+F1(ω)F2(ω)dω, (5)
其中, f 1 ( t ) ‾ \overline {{f_1}(t)} f1(t) f 2 ( t ) ‾ \overline {{f_2}(t)} f2(t) F 1 ( ω ) ‾ \overline {{F_1} (\omega )} F1(ω) F 2 ( ω ) ‾ \overline {{F_2} (\omega )} F2(ω)分别为 f 1 ( t ) {{f_1}(t)} f1(t) f 2 ( t ) {{f_2}(t)} f2(t) F 1 ( ω ) {{F_1} (\omega )} F1(ω) F 2 ( ω ) {{F_2} (\omega )} F2(ω)的共轭函数。

二、证明

(1)请证明: ∫ − ∞ + ∞ f 1 ( t ) ‾ f 2 ( t ) d t = 1 2 π ∫ − ∞ + ∞ F 1 ( ω ) ‾ F 2 ( ω ) d ω \int_{ - \infty }^{ + \infty } {\overline {{f_1}(t)} } {f_2}(t){\rm{d}}t = \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty } {\overline {{F_1}(\omega )} } {F_2}(\omega ){\rm{d}}\omega +f1(t)f2(t)dt=2π1+F1(ω)F2(ω)dω成立

证:

∫ − ∞ + ∞ f 1 ( t ) ‾ f 2 ( t ) d t = ∫ − ∞ + ∞ f 1 ( t ) ‾ [ 1 2 π ∫ − ∞ + ∞ F 2 ( ω ) e j ω t d ω ] d t = 1 2 π ∫ − ∞ + ∞ F 2 ( ω ) [ ∫ − ∞ + ∞ f 1 ( t ) ‾ e j ω t d t ] d ω   = 1 2 π ∫ − ∞ + ∞ F 2 ( ω ) [ ∫ − ∞ + ∞ f 1 ( t ) e − j ω t ‾ d t ] d ω = 1 2 π ∫ − ∞ + ∞ F 2 ( ω ) [ ∫ − ∞ + ∞ f 1 ( t ) e − j ω t d t ‾ ] d ω = 1 2 π ∫ − ∞ + ∞ F 2 ( ω ) F 1 ( ω ) ‾ d ω = 1 2 π ∫ − ∞ + ∞ F 1 ( ω ) ‾ F 2 ( ω ) d ω \begin{array}{l}\int_{ - \infty }^{ + \infty } {\overline {{f_1}(t)} } {f_2}(t){\rm{d}}t \\\\ = \int_{ - \infty }^{ + \infty } {\overline {{f_1}(t)} } \left[ {\frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty } {{F_2}(\omega )} {e^{j\omega t}}d\omega } \right]{\rm{d}}t \\\\ = \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty } {{F_2}(\omega )} \left[ {\int_{ - \infty }^{ + \infty } {\overline {{f_1}(t)} } {e^{j\omega t}}{\rm{d}}t} \right]d\omega \\\\\ = \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty } {{F_2}(\omega )} \left[ {\int_{ - \infty }^{ + \infty } {\overline {{f_1}(t){e^{ - j\omega t}}} } {\rm{d}}t} \right]d\omega \\\\ = \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty } {{F_2}(\omega )} \left[ {\overline {\int_{ - \infty }^{ + \infty } {{f_1}(t){e^{ - j\omega t}}{\rm{d}}t} } } \right]d\omega \\\\ = \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty } {{F_2}(\omega )} \overline {{F_1}(\omega )} d\omega \\\\ = \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty } {\overline {{F_1}(\omega )} {F_2}(\omega )} d\omega \end{array} +f1(t)f2(t)dt=+f1(t)[2π1+F2(ω)etdω]dt=2π1+F2(ω)[+f1(t)etdt]dω =2π1+F2(ω)[+f1(t)etdt]dω=2π1+F2(ω)[+f1(t)etdt]dω=2π1+F2(ω)F1(ω)dω=2π1+F1(ω)F2(ω)dω

注解:在此处假定 F 1 ( ω ) F_1{(\omega)} F1(ω) F 2 ( ω ) F_2{(\omega)} F2(ω) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上绝对可积分,因此能够证明积分顺序可以交换。

(2)请证明 ∫ − ∞ + ∞ f 1 ( t ) f 2 ( t ) ‾ d t = 1 2 π ∫ − ∞ + ∞ F 1 ( ω ) F 2 ( ω ) ‾ d ω \int_{ - \infty }^{ + \infty } {{f_1}} (t)\overline {{f_2}(t)} {\rm{d}}t = \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty } {{F_1}} (\omega )\overline {{F_2}(\omega )} {\rm{d}}\omega +f1(t)f2(t)dt=2π1+F1(ω)F2(ω)dω成立。

证:

∫ − ∞ + ∞ f 1 ( t ) f 2 ( t ) ‾ d t = ∫ − ∞ + ∞ [ 1 2 π ∫ − ∞ + ∞ F 1 ( ω ) e j ω t d ω ] f 2 ( t ) ‾ d t = 1 2 π ∫ − ∞ + ∞ F 1 ( ω ) [ ∫ − ∞ + ∞ f 2 ( t ) ‾ e j ω t d t ] d ω    = 1 2 π ∫ − ∞ + ∞ F 1 ( ω ) [ ∫ − ∞ + ∞ f 2 ( t ) e − j ω t ‾ d t ] d ω = 1 2 π ∫ − ∞ + ∞ F 1 ( ω ) [ ∫ − ∞ + ∞ f 2 ( t ) e − j ω t d t ‾ ] d ω = 1 2 π ∫ − ∞ + ∞ F 1 ( ω ) F 2 ( ω ) ‾ d ω \begin{array}{lllllllllllllll}{\int_{ - \infty }^{ + \infty } {{f_1}(t)\overline {{f_2}(t)} } {\rm{d}}t}\\{}\\{ = \int_{ - \infty }^{ + \infty } {\left[ {\frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty } {{F_1}(\omega )} {e^{j\omega t}}d\omega } \right]\overline {{f_2}(t)} } {\rm{d}}t}\\{}\\{ = \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty } {{F_1}(\omega )} \left[ {\int_{ - \infty }^{ + \infty } {\overline {{f_2}(t)} } {e^{j\omega t}}{\rm{d}}t} \right]d\omega }\\{}\\{\; = \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty } {{F_1}(\omega )} \left[ {\int_{ - \infty }^{ + \infty } {\overline {{f_2}(t){e^{ - j\omega t}}} } {\rm{d}}t} \right]d\omega }\\{}\\{ = \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty } {{F_1}(\omega )} \left[ {\overline {\int_{ - \infty }^{ + \infty } {{f_2}(t){e^{ - j\omega t}}{\rm{d}}t} } } \right]d\omega }\\{}\\{ = \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty } {{F_1}(\omega )} \overline {{F_2}(\omega )} d\omega }\\{}\\{}\end{array} +f1(t)f2(t)dt=+[2π1+F1(ω)etdω]f2(t)dt=2π1+F1(ω)[+f2(t)etdt]dω=2π1+F1(ω)[+f2(t)etdt]dω=2π1+F1(ω)[+f2(t)etdt]dω=2π1+F1(ω)F2(ω)dω

证毕.
注解:在此处假定 F 1 ( ω ) F_1{(\omega)} F1(ω) F 2 ( ω ) F_2{(\omega)} F2(ω) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上绝对可积分,因此能够证明积分顺序可以交换。

三、Fourier变换的乘积定理的推论

f 1 ( t ) {{f_1}(t)} f1(t) f 2 ( t ) {{f_2}(t)} f2(t)为实函数,则Fourier变换的乘积定理可写为:

∫ − ∞ + ∞ f 1 ( t ) f 2 ( t ) d t = ∫ − ∞ + ∞ f 1 ( t ) ‾ f 2 ( t ) d t = ∫ − ∞ + ∞ f 1 ( t ) f 2 ( t ) ‾ d t   = 1 2 π ∫ − ∞ + ∞ F 1 ( ω ) ‾ F 2 ( ω ) d ω = 1 2 π ∫ − ∞ + ∞ F 1 ( ω ) F 2 ( ω ) ‾ d ω \int_{ - \infty }^{ + \infty } {{{f_1}(t)} } {f_2}(t){\rm{d}}t \\=\int_{ - \infty }^{ + \infty } {\overline {{f_1}(t)} } {f_2}(t){\rm{d}}t \\=\int_{ - \infty }^{ + \infty }{f_1}(t) {\overline {{f_2}(t)} } {\rm{d}}t \\\\\ = \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty } {\overline {{F_1}(\omega )} } {F_2}(\omega ){\rm{d}} \omega \\\\\\= \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty } {{F_1}} (\omega )\overline {{F_2}(\omega )} {\rm{d}}\omega +f1(t)f2(t)dt=+f1(t)f2(t)dt=+f1(t)f2(t)dt =2π1+F1(ω)F2(ω)dω=2π1+F1(ω)F2(ω)dω

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值