大模型(LLM)推理加速之KV Cache技术

前言

在学习Key-Value Cache(kv cache),读者需要熟悉Transformer架构,最好能够懂得分析transformer模型的参数量、计算量、中间激活、KV cache。本文不会再对Transformer架构做赘述。

KV cache原理

在如GPT等大模型的推理当中,一次推理只生成一个token,输出的token会与输入tokens拼接在一起,作为下一次推理的输入,每个token都需要依赖之前生成的token,这个重要的特性就是自回归性(autoregressive)。
然而随着推理的进行,输入的tokens会越变越长,导致推理FLOPs(计算量,如果读过前言中的那篇文章,可以知道推理的 F L O P s = 2 ∗ 模型参数量 ∗ t o k e n 数) FLOPs = 2 * 模型参数量 * token数) FLOPs=2模型参数量token数)随之增大。这会严重影响推理的速度。
由于在推理过程中,第 i i i次注意力的计算都会重复计算前 i − 1 i-1 i1个token的 K K K V V V值,故KV Cache的出发点就在这里,缓存当前轮可重复利用的 K K K V V V值,下一轮计算时直接读取缓存结果。
在这里插入图片描述

具体细节

  • 原来的推理过程:假设输入是 [ b , s , h ] [b,s,h] [b,s,h](batchsize,seqencelen,hidden), K , Q , V K,Q,V K,Q,V矩阵是 [ h , h ] [h,h] [h,h],那么每次的计算结果就 [ b , s , h ] [b,s,h] [b,s,h]
  • 使用KV cache: 每次输出不再 C o n c a t Concat Concat给之前的输出(因为每次计算依据缓存过之前token的 K , V K,V K,V值),所以输入是 [ b , 1 , h ] [b,1,h] [b,1,h],那么每次计算结果就是 [ b , 1 , h ] [b,1,h] [b,1,h],在此刻再与之前已经计算过的shape为 [ b , s − 1 , h ] [b,s-1,h] [b,s1,h] K , V K,V K,V值分别进行 C o n c a t Concat Concat即可得到与原来推理过程相同的结果。但是每次没有重复计算前 i − 1 i-1 i1个token的 K K K V V V值,减少了推理计算量,提升了推理速度。

更多

如果还有细节理解不到位的地方可以参考大模型推理性能优化之KV Cache解读

### 使用 KV 缓存加速大模型训练与推理 #### 加速推理过程的方法 在大语言模型LLM)的推理阶段,KV缓存是一种有效的优化手段。由于推理过程中上下文输入经过编码器后计算出的K和V矩阵是固定的,在解码器中这些值也可以被多次利用而不改变[^3]。因此,可以通过存储先前已经计算好的键(Key)和值(Value),避免重复运算来提升效率。 具体来说: - **减少冗余计算**:当处理新的token时,只需要更新最近一次加入序列的部分对应的K/V向量即可,其余部分可以直接从缓存读取,从而节省大量资源消耗并加快速度[^2]。 - **降低延迟**:对于实时应用场景而言,使用KV缓存在每次预测新词时不需重新计算整个历史记录的相关性得分,这有助于显著缩短响应时间。 ```python def decode_with_kv_cache(model, input_ids, past_key_values=None): outputs = model( input_ids=input_ids, use_cache=True, past_key_values=past_key_values # 利用之前的KV缓存 ) next_token_logits = outputs.logits[:, -1, :] new_past_key_values = outputs.past_key_values return next_token_logits, new_past_key_values ``` 值得注意的是,在实际部署环境中还需要考虑内存管理策略以确保高效运作,比如设置合理的最大缓存大小以及及时清理不再使用的条目等措施。 #### 训练过程中的应用局限 然而,在训练期间通常不会采用KV缓存机制。这是因为训练依赖于教师强迫技术,即每次都使用真实的标签作为下一个时刻的输入而不是模型自身的预测结果,这意味着每一步都需要基于最新的参数来进行完整的前向传播操作,无法简单地复用之前的状态信息[^1]。 综上所述,虽然KV缓存主要应用于推理环节而非训练流程之中,但对于改善大规模预训练模型的实际运行表现具有重要意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值