1.数据并行DP(朴素数据并行,Zero数据并行之后补充)
O ( h 2 ∗ l ) O(h^2*l) O(h2∗l)
每台机器做完自己的梯度后需要做一次All reduce操作来累积梯度,故一个batch计算发送的数据量为每层(encoder/decoder)梯度大小和乘以层数 l l l+词嵌入和输出层的大小。
其中:
1.词嵌入层(Embedding):
参数量为 V ⋅ h V⋅h V⋅h,其中 V 是词表大小。
2.输出投影层(Output Projection):
参数量同样为$ V⋅h$,与词嵌入层相同。
3. LayerNorm 参数:
每层的 LayerNorm 有 2 ⋅ h 2⋅h 2⋅h参数(缩放因子和偏置)。
4.注意力层参数:
输入投影矩阵(Q、K、V)总参数量为 3 h 2 3h² 3h