Transformer模型分布式并行通信量浅析

1.数据并行DP(朴素数据并行,Zero数据并行之后补充)

O ( h 2 ∗ l ) O(h^2*l) O(h2l)
每台机器做完自己的梯度后需要做一次All reduce操作来累积梯度,故一个batch计算发送的数据量为每层(encoder/decoder)梯度大小和乘以层数 l l l+词嵌入和输出层的大小。
其中:

​1.词嵌入层(Embedding)​:

参数量为 V ⋅ h V⋅h Vh,其中 V 是词表大小。

2.输出投影层(Output Projection)​:

参数量同样为$ V⋅h$,与词嵌入层相同。

3. ​LayerNorm 参数:

每层的 LayerNorm 有 2 ⋅ h 2⋅h 2h参数(缩放因子和偏置)。

4.注意力层参数:

输入投影矩阵(Q、K、V)总参数量为 3 h 2 3h² 3h

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值