【论文阅读笔记】Estimating Human Pose from Occluded Images

论文地址:Estimating Human Pose from Occluded Images

论文总结:

  本文是2009年的3D姿态检测的方法。其从图片中直接回归3D关节点的位置。之前未解决的问题是如何估计一个被部分/眼中这单个的人的3D姿态。本文提出的时候,深度学习还未泛滥,与现在已经不太符合了。
  本文中,作者提出一个方法解决遮挡问题:利用稀疏信号表示,这样测试的样本可以被看做是训练样本的紧凑线性表示。稀疏解可以通过一些确定的正则项(比如 L 1 L_1 L1)求解凸优化获得。通过对未遮挡训练图片的线性组合,可正确恢复被遮挡(破坏)的测试图片。然后将其用于正确地估计被遮挡的人体姿态(就如同不存在遮挡一样)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值