PDFtoChat:开源 AI 文档处理工具,实现与 PDF 文档自然语言秒级问答

❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

🚀 快速阅读

  1. PDFtoChat 是一款基于 AI 的 PDF 交互工具,支持用户通过自然语言与 PDF 文件对话。
  2. 该工具利用 Together AI 和 Pinecone 技术,提供高效的文档检索和答案提取功能。
  3. 通过 Next.js、MongoDB Atlas 和 LangChain.js 等技术的结合,实现用户友好的界面和强大的后台支持。

正文(附运行示例)

PDFtoChat 是什么

在这里插入图片描述

PDFtoChat 是一个开源的创新 AI 项目,它让用户可以通过自然语言对话的方式与 PDF 文件互动。这个工具基于最新的 AI 技术,比如 Together AI 和 Mixtral,能够理解用户的提问并从 PDF 内容中提取相关信息。它使用了 Next.js App Router 框架,并结合了 LangChain.js、MongoDB Atlas 等多种技术,提供了强大的文档检索和交互能力,大大提高了处理文档的效率。

PDFtoChat 的主要功能

  • PDF 文件上传与解析:用户可以轻松上传 PDF 文件,系统会自动解析文件内容,为后续的互动做好准备。
  • 自然语言问答:用户可以用日常语言向 PDF 文件提问,系统会理解问题并从文件中找到答案。
  • 即时反馈:系统会快速响应用户的问题,提供及时的反馈和答案。
  • 智能检索:利用先进的 AI 技术,系统能够理解文档内容,智能地检索相关信息。
  • 用户友好的界面:提供简洁直观的用户界面,让与 PDF 文件的互动变得简单易懂。

PDFtoChat 的技术原理

  • AI 模型与推理:使用 Together AI 提供的 Mixtral 和 M2 Bert 80M 模型来进行语言模型的推理和嵌入,从而理解和处理自然语言。
  • 向量数据库:利用 MongoDB Atlas 存储和检索文档的向量,通过向量搜索快速找到相关信息。
  • 聊天机器人框架:使用 LangChain.js 实现“检索-生成”(RAG)聊天机器人框架,结合了检索和生成模型的优势。
  • PDF 存储:使用 Bytescale 来存储和管理上传的 PDF 文件,确保文件的安全和可访问性。
  • 前端框架:采用 Next.js App Router 作为前端框架,提供灵活的路由管理和页面渲染功能。

如何运行 PDFtoChat

要部署自己的 PDFtoChat 实例,需要完成以下步骤:

  1. 设置 Together.ai:注册并获取 API 密钥。
  2. 设置 MongoDB Atlas
  • 创建数据库集群。
  • 创建一个空白集合。
  • 创建一个向量搜索索引,配置如下:
{
  "fields": [
    {
      "numDimensions": 768,
      "path": "embedding",
      "similarity": "euclidean",
      "type": "vector"
    },
    {
      "path": "docstore_document_id",
      "type": "filter"
    }
  ]
}
  1. 设置 Bytescale:注册并获取 API 密钥。
  2. 设置 Clerk:用于用户认证。
  3. 设置 Vercel:用于托管和 Postgres 数据库。
  4. 准备数据库模式:运行npx prisma db push

环境变量配置示例:

NEXT_PUBLIC_VECTORSTORE=mongodb
MONGODB_ATLAS_URI=your_connection_string
MONGODB_ATLAS_DB_NAME=your_database_name
MONGODB_ATLAS_COLLECTION_NAME=your_collection_name
MONGODB_ATLAS_INDEX_NAME=your_index_name

资源


❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值