❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!
🥦 微信公众号|搜一搜:蚝油菜花 🥦
🚀 快速阅读
- PDFtoChat 是一款基于 AI 的 PDF 交互工具,支持用户通过自然语言与 PDF 文件对话。
- 该工具利用 Together AI 和 Pinecone 技术,提供高效的文档检索和答案提取功能。
- 通过 Next.js、MongoDB Atlas 和 LangChain.js 等技术的结合,实现用户友好的界面和强大的后台支持。
正文(附运行示例)
PDFtoChat 是什么
PDFtoChat 是一个开源的创新 AI 项目,它让用户可以通过自然语言对话的方式与 PDF 文件互动。这个工具基于最新的 AI 技术,比如 Together AI 和 Mixtral,能够理解用户的提问并从 PDF 内容中提取相关信息。它使用了 Next.js App Router 框架,并结合了 LangChain.js、MongoDB Atlas 等多种技术,提供了强大的文档检索和交互能力,大大提高了处理文档的效率。
PDFtoChat 的主要功能
- PDF 文件上传与解析:用户可以轻松上传 PDF 文件,系统会自动解析文件内容,为后续的互动做好准备。
- 自然语言问答:用户可以用日常语言向 PDF 文件提问,系统会理解问题并从文件中找到答案。
- 即时反馈:系统会快速响应用户的问题,提供及时的反馈和答案。
- 智能检索:利用先进的 AI 技术,系统能够理解文档内容,智能地检索相关信息。
- 用户友好的界面:提供简洁直观的用户界面,让与 PDF 文件的互动变得简单易懂。
PDFtoChat 的技术原理
- AI 模型与推理:使用 Together AI 提供的 Mixtral 和 M2 Bert 80M 模型来进行语言模型的推理和嵌入,从而理解和处理自然语言。
- 向量数据库:利用 MongoDB Atlas 存储和检索文档的向量,通过向量搜索快速找到相关信息。
- 聊天机器人框架:使用 LangChain.js 实现“检索-生成”(RAG)聊天机器人框架,结合了检索和生成模型的优势。
- PDF 存储:使用 Bytescale 来存储和管理上传的 PDF 文件,确保文件的安全和可访问性。
- 前端框架:采用 Next.js App Router 作为前端框架,提供灵活的路由管理和页面渲染功能。
如何运行 PDFtoChat
要部署自己的 PDFtoChat 实例,需要完成以下步骤:
- 设置 Together.ai:注册并获取 API 密钥。
- 设置 MongoDB Atlas:
- 创建数据库集群。
- 创建一个空白集合。
- 创建一个向量搜索索引,配置如下:
{
"fields": [
{
"numDimensions": 768,
"path": "embedding",
"similarity": "euclidean",
"type": "vector"
},
{
"path": "docstore_document_id",
"type": "filter"
}
]
}
- 设置 Bytescale:注册并获取 API 密钥。
- 设置 Clerk:用于用户认证。
- 设置 Vercel:用于托管和 Postgres 数据库。
- 准备数据库模式:运行
npx prisma db push
。
环境变量配置示例:
NEXT_PUBLIC_VECTORSTORE=mongodb
MONGODB_ATLAS_URI=your_connection_string
MONGODB_ATLAS_DB_NAME=your_database_name
MONGODB_ATLAS_COLLECTION_NAME=your_collection_name
MONGODB_ATLAS_INDEX_NAME=your_index_name
资源
- 项目官网:pdftochat.com
- Together AI:Together AI
- MongoDB Atlas:MongoDB Atlas
- Bytescale:Bytescale
- Vercel:Vercel
- Clerk:Clerk
- LangChain.js:LangChain.js
❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!
🥦 微信公众号|搜一搜:蚝油菜花 🥦