单目测距和双目测距 bev 3D车道线

单目视觉测距原理

单目视觉测距有两种方式。

第一种,是通过深度神经网络来预测深度,这需要大量的训练数据。训练后的单目视觉摄像头可以认识道路上最典型的参与者——人、汽车、卡车、摩托车,或是其他障碍物(雪糕桶之类),然后对识别到的物体进行距离估计。

第二种,是结合车辆的运动信息,用时序上的相邻帧进行“类双目视觉“的检测,这种方法也被称为motion stereo或structure from motion。

单目摄像头的算法思路是先识别后测距:首先通过图像识别,然后根据图像大小和高度进一步估算障碍物与本车距离。

单目深度估计

双目测距

双目摄像头的算法思路是先测距后识别:首先利用视差直接测量物体与车的距离,然后在识别阶段,双目仍然要利用单目一样利用深度学习算法,进一步识别障碍物到底是什么。

根据双目视觉的测距原理,通常将其实现过程分为五个步骤:相机标定,图像获取,图像预处理,特征提取与立体匹配,三维重构。其中,相机标定是为了得 到相机的内外参数和畸变系数等,可以离线进行;而左右相机图像获取的同步性,图像预处理的质量和一致性,以及立体匹配(获取视差信息)和三维重构(获取距离信息)算法的实时性要求带来的巨大运算量,对在嵌入式平台上实现双目视觉ADAS提出了挑战。

与单目视觉相比,双目视觉测距精度较高。

双目相机需要同步。

立体匹配计算量大。

受光影响大:在大雨天气或者前方强光源的情况下,前视摄像头有可能看不清车道线,环视摄像头斜向下看车道线且可 以提供多个角度,基本不会受到地面积水反光的影响,功能可以比前视做得更稳定。但同时也要考虑侧向 无车灯照射时,摄像头的夜间表现。

左右镜头的光照不同,环境光照过强过弱,不均匀等。

相机间距越小,检测距离越近;相机间距越大,检测距离越远。

遮挡、弱纹理和重复纹理区域、深度不连续区域难以获取高精度和高鲁棒的视差信息,自动标定算法不成熟。

首先,和单目视觉相比双目视觉的成本会更高(无论是多一个摄像头,还是对计算深度图算力的要求),但实话实说还是在可接受的范围内,毕竟和激光雷达比都是小钱,也不需要为单目视觉庞大的训练集买单。

其次,双目视觉本身对于目标的纹理是有要求的,既不能太简单,也不能太复杂。一堵大白墙对于双目视觉来说识别是有风险的,而激光雷达等传感器则可以很好地进行检测。但话说回来,真实场景中也不太可能有一堵大白墙横在路中间,再看看激光雷达的价格,哎,算了吧。

再次,双目视觉对于远距离物体探测的精度是弱于激光雷达的。双目深度的误差是与距离的平方成正比的,而激光雷达的精度基本上和距离无关。

双目立体匹配

PatchMatch SGBM SGM AD-census

【论文阅读】(2023 奥比中光 综述)双目立体视觉研究进展与应用 - 仓颉ZL - 博客园

单目深度估计

zeroDepth 2023

depth-any

单目3D mono

smoke

MonoDLE

CenterNet

Lite-FPN for keypoint-based Monocular 3D object detect

https://www.zhihu.com/question/516518724/answer/3060443825?utm_id=0

qd-3dt

 Complex YOLO

https://zhuanlan.zhihu.com/p/483833539?utm_id=0

MonoDLE

【论文解读】单目3D目标检测 MonoDLE(CVPR2021)-CSDN博客

MonoFlex 2021

【论文解读】单目3D目标检测 MonoFlex(CVPR 2021)-CSDN博客

【单目3D目标检测】MonoFlex论文精读与代码解析-CSDN博客

MonoCD 2024

https://zhuanlan.zhihu.com/p/691322485

朝向预测运动轨迹

添加时序的模型比较大

 

对深度信息的恢复是对3D目标检测最关键的任务

当前case与深度估计所依赖的假设相冲突,所深度估计结果会产生严重的退化。

对一个目标使用多种方法(依赖不同的假设)产生多种深度估计。

MonoDLE

单目3D目标检测——MonoDLE 模型训练 | 模型推理-CSDN博客

使用预训练权重推理

 首先下载预训练权重:

https://drive.google.com/file/d/1jaGdvu_XFn5woX0eJ5I2R6wIcBLVMJV6/view

下载好的权重名称为:checkpoint_epoch_140.pth,新建一个文件夹monocon-pytorch-main/checkpoints/,存放权重

然后修改配置文件experiments/example/kitti_example.yaml

tester:

type: *dataset_type

mode: single # 'single' or 'all'

checkpoint: '../../checkpoints/checkpoint_epoch_140.pth' # for 'single' mode

checkpoints_dir: '../../checkpoints' # for 'all' model

threshold: 0.2 # confidence filter

python ../../tools/train_val.py --config kitti_example.yaml --e

推理完成后,结果存放在experiments/example/outputs/data

生成的结果,和kitii标签格式是一致的。

先将kitti 原始数据testing中label_2备份,将新生成的标签experiments/example/outputs/data复制到kitti 原始数据testing中label_2中,然后可视化。

单目3D检测入门!从图像角度分析3D目标检测场景:MonoDLE-CSDN博客

【论文解读】单目3D目标检测 MonoDLE(CVPR2021)-CSDN博客

https://zhuanlan.zhihu.com/p/452886061

查看工业界 https://www.zhihu.com/question/516518724/answer/3381421318

3D车道线

bev感知算法

Depth-anything v2 深度估计

BEVDepth首次将纯视觉与激光雷达的差距缩到10%以内

《餐馆点餐管理系统——基于JavaMySQL的课程设计解析》 在信息技术日益发达的今天,餐饮行业的数字化管理已经成为一种趋势。本次课程设计的主题是“餐馆点餐管理系统”,它结合了编程语言Java数据库管理系统MySQL,旨在帮助初学者理解如何构建一个实际的、具有基本功能的餐饮管理软件。下面,我们将深入探讨这个系统的实现细节及其所涉及的关键知识点。 我们要关注的是数据库设计。在“res_db.sql”文件中,我们可以看到数据库的结构,可能包括菜品表、订表、顾客信息表等。在MySQL中,我们需要创建这些表格并定义相应的字段,如菜品ID、名称、价格、库存等。此外,还要设置主键、外键来保证数据的一致性完整性。例如,菜品ID作为主键,确保每个菜品的唯一性;订表中的顾客ID菜品ID则作为外键,与顾客信息表菜品表关联,形成数据间的联系。 接下来,我们来看Java部分。在这个系统中,Java主要负责前端界面的展示后端逻辑的处理。使用Java Swing或JavaFX库可以创建用户友好的图形用户界面(GUI),让顾客能够方便地浏览菜、下。同时,Java还负责与MySQL数据库进行交互,通过JDBC(Java Database Connectivity)API实现数据的增删查改操作。在程序中,我们需要编写SQL语句,比如INSERT用于添加新的菜品信息,SELECT用于查询所有菜品,UPDATE用于更新菜品的价格,DELETE用于删除不再提供的菜品。 在系统设计中,我们还需要考虑一些关键功能的实现。例如,“新增菜品价格”的功能,需要用户输入菜品信息,然后通过Java程序将这些信息存储到数据库中。在显示所有菜品的功能上,程序需要从数据库获取所有菜品数据,然后在界面上动态生成列表或者表格展示。同时,为了提高用户体验,可能还需要实现搜索排序功能,允许用户根据菜品名称或价格进行筛选。 另外,安全性也是系统设计的重要一环。在连接数据库时,要避免SQL注入攻击,可以通过预编译的PreparedStatement对象来执行SQL命令。对于用户输入的数据,需要进行验证过滤,防止非法字符异常值。 这个“餐馆点餐管理系统”项目涵盖了Java编程、数据库设计与管理、用户界面设计等多个方面,是一个很好的学习实践平台。通过这个项目,初学者不仅可以提升编程技能,还能对数据库管理软件工程有更深入的理解。在实际开发过程中,还会遇到调试、测试、优化等挑战,这些都是成长为专业开发者不可或缺的经验积累
<think>好的,我现在需要帮助用户了解或实现得物签名的相关技术,特别是签名算法的实现方式。首先,我需要收集已有的信息。根据用户提供的引用,特别是引用[4][5],得物的签名算法可能涉及逆向工程分析,使用了JavaScript中的XMLHttpRequest重写来拦截请求,并在请求中包含特定的sign参数。这可能意味着签名生成是在客户端进行的,通常在前端JavaScript代码中完成。 接下来,我应该考虑常见的签名生成方法。常见的Web应用签名算法通常使用HMAC、AES、RSA或自定义的哈希组合。引用[1]提到了RSA算法,但得物的签名可能更倾向于使用HMAC-SHA256之类的哈希算法,结合时间戳、随机数请求参数进行签名,以防止篡改重放攻击。 用户可能需要具体的步骤,比如逆向分析得物的JavaScript代码,找到生成sign的函数,提取关键参数加密逻辑。引用[5]中的代码片段展示了如何重写XMLHttpRequest的open方法来拦截请求,这可能用于调试定位签名生成的代码位置。 此外,引用[4]提到使用Python进行算法还原,所以可能需要在Python中复现JavaScript的签名生成逻辑。这通常涉及分析请求参数如何排序、拼接,以及如何与密钥结合进行哈希或加密。需要注意反爬机制,如obfuscation(代码混淆)或动态密钥,这可能需要使用AST(抽象语法树)解析或动态执行来还原算法。 用户可能还需要了解如何应对反调试措施,比如在Chrome开发者工具中使用断点调试,或者使用工具如Frida进行Hook。同时,引用[3][4]强调了法律合规问题,确保研究仅用于学习目的,不用于非法用途。 最后,应该提醒用户注意法律风险,遵循网站的使用条款,避免侵犯知识产权或违反计算机安全法律。总结起来,实现得物签名需要逆向工程分析前端代码,提取关键算法,处理可能的混淆反调试,最后用目标语言如Python复现算法。</think>### 得物签名算法实现方式分析 得物签名算法主要用于接口请求的身份验证防篡改保护,常见实现方式涉及以下技术点: #### 1. **签名参数组成** 签名通常由以下参数动态生成: - 请求参数(经排序、过滤空值后拼接) - 时间戳(如:$timestamp=1620000000$) - 随机数(如:$nonce=5a8s3d$) - 设备指纹(如:$device\_id=abcdef$) - 应用密钥(加密盐值,可能动态获取)[^4] 示例参数拼接逻辑: $$ \text{sign\_str} = \text{path} + \text{sorted\_params} + \text{timestamp} + \text{nonce} $$ #### 2. **加密算法类型** 根据逆向分析,得物可能采用以下组合: - **HMAC-SHA256**:对拼接字符串进行哈希运算 - **AES/Base64编码**:对结果二次处理 - **自定义位移/异或操作**:增加逆向难度[^5] #### 3. **JavaScript代码混淆** 关键函数可能被混淆,例如: ```javascript function _0x12ab5(a, b) { return a ^ b << 3; } // 需要AST解析还原控制流 ``` #### 4. **Python算法还原示例** ```python import hmac import hashlib def generate_sign(params, secret_key): # 1. 参数排序并拼接 sorted_str = '&'.join([f"{k}={v}" for k,v in sorted(params.items())]) # 2. HMAC-SHA256加密 sign = hmac.new(secret_key.encode(), sorted_str.encode(), hashlib.sha256).hexdigest() # 3. 自定义处理(示例) return sign.upper() + str(int(time.time())) ``` #### 5. **反爬对抗措施** - 动态密钥:通过接口定期更新加密盐值 - 环境检测:验证是否在真机环境运行 - 请求频率限制:异常高频触发验证码[^5]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值