无向图双连通分量(poj-3352)

39 篇文章 0 订阅

预备知识:图的相关知识 https://www.byvoid.com/blog/biconnect/
题目的大致意思是:在一个连通图中,至少添加多少条边,使图中不存在桥

Tarjin时借助并查集,由于桥(删除之后图就不连通的边)不属于任何双连通分量,所以在Tarjin时,把不是桥的边的u,v并在一起,表示u,v在同一个双连通分量里,进行缩点。
一个重要的结论:
若要使得任意一棵树,在增加若干条边后,变成一个双连通图,那么至少增加的边数 =( 这棵树总度数为1的结点数 + 1 )/ 2。

#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <cmath>
#include <algorithm>
#define ll long long
#define N 1010
using namespace std;
struct Edge{
    int to, next;
}e[N<<1];
int pre[N], dfs_clock, low[N], degree[N], head[N], tol;

void addEdge(int u, int v) {
    e[tol].to = v;
    e[tol].next = head[u];
    head[u] = tol++;
    e[tol].to = u;
    e[tol].next = head[v];
    head[v] = tol++;
}

void dfs(int u, int father) {
    low[u] = pre[u] = ++dfs_clock;
    for (int i = head[u]; i != -1; i = e[i].next) {
        int v = e[i].to;
        if (!pre[v]) {
            dfs(v, u);
            low[u] = min(low[u], low[v]);
        } else if (pre[v] < pre[u] && v != father) {
            low[u] = min(low[u], pre[v]);
        }
    }
}
int main()
{
#ifndef ONLINE_JUDGE
//  freopen("1.txt", "r", stdin);
#endif
    int n, m, u, v;
    while(cin >> n >> m) {
        memset(head, -1, sizeof(head));
        memset(pre, 0, sizeof(pre));
        memset(low, 0, sizeof(low));
        memset(degree, 0, sizeof(degree));
        dfs_clock = 0;
        tol = 0;
        for (int i = 0; i < m; i++) {
            scanf("%d%d", &u, &v);
            addEdge(u, v);
        }
        dfs(1, -1); //连通图,一次深搜就可以遍历所有点 
        for (u = 1; u <= n; u++) {
            for (int i = head[u]; i != -1; i = e[i].next){
                v = e[i].to;
                if (low[u] != low[v]) {
                    degree[low[u]]++;
                }
            }
        }
        int ans = 0;
        for (int i = 1; i <= n; i++) {
            ans += (degree[i] == 1);
        }
        cout << (ans+1)/2 << endl;
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值