CLLC谐振变换器的基波分析

CLLC谐振变换器_基波分析

目录

电路图

在这里插入图片描述

FHA分析

  1. 输入电压FHA分析
    谐振输入假设为理想方波
    V i ( t ) = 4 V i n π ∑ n = 1 , 3 , 5... ∞ 1 n s i n ( 2 π n f s t ) V_{i}(t)=\frac{4Vin}{\pi}\sum_{n=1,3,5...}^{\infin}\frac{1}{n}sin(2\pi nf_st) Vi(t)=π4Vinn=1,3,5...n1sin(2πnfst) (方波的傅里叶变换)
    基波提取
    V i ( t ) = 4 V i n π s i n ( 2 π f s t ) V_i(t)=\frac{4Vin}{\pi}sin(2\pi f_st) Vi(t)=π4Vinsin(2πfst)
    有效值提取
    V i , F H A = 2 2 V i n π V_{i,FHA}=\frac{2\sqrt{2}Vin}{\pi} Vi,FHA=π22 Vin
  2. 输出电压FHA分析
    谐振输出也设为理想方波
    V o ( t ) = 4 V o π ∑ n − 1 , 3 , 5... ∞ 1 n s i n ( 2 π n f s t − ϕ ) V_{o}(t)=\frac{4Vo}{\pi}\sum_{n-1,3,5...}^{\infty}\frac{1}{n}sin(2\pi nf_st-\phi) Vo(t)=π4Von1,3,5...n1sin(2πnfstϕ) ϕ 为相对输入方波的相移 \phi 为相对输入方波的相移 ϕ为相对输入方波的相移
    基波提取
    V o ( t ) = 4 V o π s i n ( 2 π f s − ϕ ) V_{o}(t)=\frac{4V_o}{\pi} sin(2\pi f_s-\phi) Vo(t)=π4Vosin(2πfsϕ)
    有效值提取
    V o , F H A = 2 2 V o π V_{o,FHA}=\frac{2\sqrt{2}V_o}{\pi} Vo,FHA=π22 Vo
  3. 输出电流FHA分析
    i ( t ) = 2 I r c t , F H A s i n ( 2 π f s t − ϕ ) i(t)=\sqrt{2}I_{rct,FHA}sin(2\pi f_st-\phi) i(t)=2 Irct,FHAsin(2πfstϕ)
    平均输出电流
    I o = 2 T s ∫ 0 T s 2 ∣ i r c t , F H A ( t ) ∣ d t = 2 2 π I r c t , F H A I_o=\frac{2}{T_s}\int_0^{\frac{T_s}{2}}|i_{rct,FHA}(t)|dt=\frac{2\sqrt{2}}{\pi}I_{rct,FHA} Io=Ts202Tsirct,FHA(t)dt=π22 Irct,FHA
  4. 输出负载FHA分析
    I r c t , F H A = π 2 2 I o I_{rct,FHA}=\frac{\pi}{2\sqrt{2}}I_o Irct,FHA=22 πIo
    V o , F H A = 2 2 π V o V_{o,FHA}=\frac{2\sqrt{2}}{\pi}V_o Vo,FHA=π22 Vo
    R o , e q = V o , F H A I r c t , F H A = 8 π 2 R o R_{o,eq}=\frac{V_{o,FHA}}{I_{rct,FHA}}=\frac{8}{\pi^2}R_o Ro,eq=Irct,FHAVo,FHA=π28Ro

基于FHA的电路增益特性分析

在这里插入图片描述

H r ( s ) = Z o ( s ) Z i n ( s ) R e q Z 2 ( s ) + R e q H_{r}(s)=\frac{Z_o(s)}{Z_{in}(s)}\frac{R_{eq}}{Z_2(s)+R_{eq}} Hr(s)=Zin(s)Zo(s)Z2(s)+ReqReq
其中 { Z i n ( s ) = Z 1 ( s ) + Z o ( s ) Z o ( s ) = Z m ( s ) ( Z 2 ( s ) + R e q ) Z m ( s ) + Z 2 ( s ) + R e q Z 1 ( s ) = s L 1 + 1 s C 1 Z 2 ( s ) = s L 2 + 1 s C 2 Z m ( s ) = s L m \begin{cases} Z_{in}(s)=Z_1(s)+Z_o(s)\\ Z_o(s)=\frac{Z_m(s)(Z_2(s)+R_{eq})}{Z_m(s)+Z_2(s)+R_{eq}}\\ Z_1(s)=sL_1+\frac{1}{sC_1}\\ Z_2(s)=sL_2+\frac{1}{sC_2}\\ Z_m(s)=sL_m \end{cases} Zin(s)=Z1(s)+Zo(s)Zo(s)=Zm(s)+Z2(s)+ReqZm(s)(Z2(s)+Req)Z1(s)=sL1+sC11Z2(s)=sL2+sC21Zm(s)=sLm

H r ( s ) = C 1 C 2 L m R s 3 C 1 C 2 L 1 L 2 s 4 + C 1 C 2 L 1 L m s 4 + C 1 C 2 L 1 R s 3 + C 1 C 2 L 2 L m s 4 + C 1 C 2 L m R s 3 + C 1 L 1 s 2 + C 1 L m s 2 + C 2 L 2 s 2 + C 2 L m s 2 + C 2 R s + 1 H_r(s)=\frac{{C_1}{C_2}{L_m} R s^3}{{C_1} {C_2} {L_1} {L_2}s^4+{C_1} {C_2} {L_1} {L_m} s^4+{C_1} {C_2} {L_1} Rs^3+{C_1} {C_2} {L_2} {L_m} s^4+{C_1} {C_2} {L_m} Rs^3+{C_1} {L_1} s^2+{C_1} {L_m} s^2+{C_2} {L_2}s^2+{C_2} {L_m} s^2+{C_2} R s+1} Hr(s)=C1C2L1L2s4+C1C2L1Lms4+C1C2L1Rs3+C1C2L2Lms4+C1C2LmRs3+C1L1s2+C1Lms2+C2L2s2+C2Lms2+C2Rs+1C1C2LmRs3
H r ( j w ) = C 1 C 2 j 3 L m R w 3 C 2 j w ( j w ( C 1 j 2 w 2 ( L m ( L 1 + L 2 ) + L 1 L 2 ) + L 2 + L m ) + C 1 j 2 R w 2 ( L 1 + L m ) + R ) + C 1 j 2 w 2 ( L 1 + L m ) + 1 H_r(jw)=\frac{{C_1} {C_2} j^3 {L_m} R w^3}{{C_2} j w \left(j w\left({C_1} j^2 w^2 ({L_m} ({L_1}+{L_2})+{L_1}{L_2})+{L_2}+{L_m}\right)+{C_1} j^2 R w^2({L_1}+{L_m})+R\right)+{C_1} j^2 w^2 ({L_1}+{L_m})+1} Hr(jw)=C2jw(jw(C1j2w2(Lm(L1+L2)+L1L2)+L2+Lm)+C1j2Rw2(L1+Lm)+R)+C1j2w2(L1+Lm)+1C1C2j3LmRw3
H r ( j w ) = − L m R w j ( C 1 C 2 w 4 ( L m ( L 1 + L 2 ) + L 1 L 2 ) − C 2 w 2 ( L 2 + L m ) C 1 C 2 w 2 − C 1 w 2 ( L 1 + L m ) − 1 C 1 C 2 w 2 ) + R ( C 1 w 2 ( L 1 + L m ) − 1 ) C 1 w H_r(jw)=-\frac{{L_m} R w}{j \left(\frac{{C_1} {C_2} w^4 ({L_m} ({L_1}+{L_2})+{L_1} {L_2})-{C_2} w^2 ({L_2}+{L_m})}{{C_1}{C_2} w^2}-\frac{{C_1} w^2 ({L_1}+{L_m})-1}{{C_1} {C_2} w^2}\right)+\frac{R \left({C_1} w^2({L_1}+{L_m})-1\right)}{{C_1} w}} Hr(jw)=j(C1C2w2C1C2w4(Lm(L1+L2)+L1L2)C2w2(L2+Lm)C1C2w2C1w2(L1+Lm)1)+C1wR(C1w2(L1+Lm)1)LmRw
H r ( j w ) = k w C 1 R j ( 1 C 1 L 1 w 2 − k − 1 g + C 1 L 1 w 2 ( h k + h + k ) − h − k ) + R ( C 1 ( k + 1 ) w − 1 L 1 w ) H_r(jw)=\frac{kwC_1R}{j \left(\frac{\frac{1}{{C_1} {L_1} w^2}-k-1}{g}+{C_1} {L_1} w^2 (h k+h+k)-h-k\right)+R \left({C_1} (k+1)w-\frac{1}{{L_1} w}\right)} Hr(jw)=j(gC1L1w21k1+C1L1w2(hk+h+k)hk)+R(C1(k+1)wL1w1)kwC1R
H r ( j w ) = k w C 1 R R ( C 1 ( k + 1 ) w − 1 L 1 w ) + j ( − k + w 1 2 w 2 − 1 g + w 2 ( h k + h + k ) w 1 2 − h − k ) H_r(jw)=\frac{kwC_1R}{R \left({C_1} (k+1) w-\frac{1}{{L_1} w}\right)+j \left(\frac{-k+\frac{{w_1}^2}{w^2}-1}{g}+\frac{w^2 (hk+h+k)}{{w_1}^2}-h-k\right)} Hr(jw)=R(C1(k+1)wL1w1)+j(gk+w2w121+w12w2(hk+h+k)hk)kwC1R
上下同除以 k w C 1 R 并且代入 R = Z 1 Q , Z 1 = L 1 C 1 , L 1 C 1 = w 1 , w 1 w s = w n , 得 上下同除以kwC1R并且代入R=\frac{Z_1}{Q},Z_1=\sqrt{\frac{L_1}{C_1}},\sqrt{L_1C_1}=w_1,\frac{w_1}{w_s}=w_n,得 上下同除以kwC1R并且代入R=QZ1,Z1=C1L1 ,L1C1 =w1,wsw1=wn,
H r ( j w ) = − 1 j Q ( g h + g k + k + 1 ) C 1 g k w s L 1 C 1 + j Q w 1 2 C 1 g k w s 3 L 1 C 1 + j Q w s ( h k + h + k ) C 1 k w 1 2 L 1 C 1 − 1 C 1 k L 1 w s 2 + k + 1 k H_r(jw)=-\frac{1}{\frac{j Q (g h+g k+k+1)}{{C_1} g k {w_s}\sqrt{\frac{{L_1}}{{C_1}}}}+\frac{j Q {w_1}^2}{{C_1} g k{w_s}^3 \sqrt{\frac{{L_1}}{{C_1}}}}+\frac{j Q {w_s} (hk+h+k)}{{C_1} k {w_1}^2\sqrt{\frac{{L_1}}{{C_1}}}}-\frac{1}{{C_1} k {L_1}{w_s}^2}+\frac{k+1}{k}} Hr(jw)=C1gkwsC1L1 jQ(gh+gk+k+1)+C1gkws3C1L1 jQw12+C1kw12C1L1 jQws(hk+h+k)C1kL1ws21+kk+11
H r ( j w n ) = − 1 − j Q ( g h + g k + k + 1 ) g k w n + j Q g k w n 3 + j Q w n ( h k + h + k ) k − 1 k w n 2 + k + 1 k H_r(jw_n)=-\frac{1}{-\frac{j Q (g h+g k+k+1)}{g k {w_n}}+\frac{j Q}{g k {w_n}^3}+\frac{j Q{w_n} (h k+h+k)}{k}-\frac{1}{k {w_n}^2}+\frac{k+1}{k}} Hr(jwn)=gkwnjQ(gh+gk+k+1)+gkwn3jQ+kjQwn(hk+h+k)kwn21+kk+11
整理得
H r ( j w n ) = 1 j Q k ( − g h + g k + k + 1 g w n + 1 g w n 3 + w n ( h k + h + k ) ) − 1 k w n 2 + k + 1 k H_r(jw_n)=\frac{1}{\frac{j Q}{k} \left(-\frac{g h+g k+k+1}{g {w_n}}+\frac{1}{g {w_n}^3}+{w_n} (hk+h+k)\right)-\frac{1}{k {w_n}^2}+\frac{k+1}{k}} Hr(jwn)=kjQ(gwngh+gk+k+1+gwn31+wn(hk+h+k))kwn21+kk+11
增益为
M ( w n ) = ∣ ∣ H r ( j w n ) ∣ ∣ = 1 ( j Q k ) 2 ( − g h + g k + k + 1 g w n + 1 g w n 3 + w n ( h k + h + k ) ) 2 + ( − 1 k w n 2 + k + 1 k ) 2 M(w_n)=||H_r(jw_n)||=\frac{1}{\sqrt{(\frac{j Q}{k})^2 \left(-\frac{g h+g k+k+1}{g {w_n}}+\frac{1}{g {w_n}^3}+{w_n} (hk+h+k)\right)^2+(-\frac{1}{k {w_n}^2}+\frac{k+1}{k})^2}} M(wn)=∣∣Hr(jwn)∣∣=(kjQ)2(gwngh+gk+k+1+gwn31+wn(hk+h+k))2+(kwn21+kk+1)2 1
{ a = k + h + k h b = k + k g + h + 1 g c = 1 g \begin{cases} a=k+h+kh \\ b=k+\frac{k}{g}+h+\frac{1}{g}\\ c=\frac{1}{g} \end{cases} a=k+h+khb=k+gk+h+g1c=g1
M ( w n ) = ∣ ∣ H r ( j w n ) ∣ ∣ = 1 ( j Q k ) 2 ( − b w n + c w n 3 + a w n ) 2 + ( − 1 k w n 2 + k + 1 k ) 2 M(w_n)=||H_r(jw_n)||=\frac{1}{\sqrt{(\frac{j Q}{k})^2 \left(-\frac{b}{ {w_n}}+\frac{c}{ {w_n}^3}+ a{w_n}\right)^2+(-\frac{1}{k {w_n}^2}+\frac{k+1}{k})^2}} M(wn)=∣∣Hr(jwn)∣∣=(kjQ)2(wnb+wn3c+awn)2+(kwn21+kk+1)2 1

  • 0
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值