「从零开始手写VIO」第七讲学习笔记

这篇博客介绍了从零开始手写视觉惯性里程计(VIO)的学习过程,重点关注编译调试VINS-Mono。内容包括安装依赖、编译代码、运行CurveFitting示例和VINs-Mono在Euroc数据集上的应用。同时讲解了EuRoC数据集的使用,特别是基线长度的概念和其在SLAM中的意义。
摘要由CSDN通过智能技术生成

「从零开始手写VIO」第一章学习笔记

编译调试

Vins Course 基于 VINS-Mono 框架不依赖ROS Ceres G2o
代码仅基于 Eigen 的后端 LM 算法,滑动窗口算法,鲁棒核函数等 SLAM 优化中常见的算法

安装依赖项

  1. pangolin: https://github.com/stevenlovegrove/Pangolin
  2. opencv
  3. Eigen
  4. Ceres: vins 初始化部分使用了 ceres 做 sfm

编译代码

mkdir vins_course
cd vins_course
git clone https://github.com/HeYijia/VINS-Course
mkdir build 
cd build
cmake ..
make -j4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小秋slam入门实战

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值