这篇文章主要介绍高斯核函数的一些性质和基于高斯核函数的SVDD方法
一、高斯核函数的一些性质
1. 高斯核对饮的映射空间是无限维空间
在上一篇博客中,我们用无穷级数已经说明过这一点,所以这里我们就不再重复了。
2.高斯核函数对应的高维空间中,每一个向量的模长一定是1
这个我们可以用高斯核函数本身的性质来进行求解
∣ ∣ ϕ ( x ⃗ ) ∣ ∣ 2 = ϕ ( x ⃗ ) ⋅ ϕ ( x ⃗ ) = K ( x ⃗ , x ⃗ ) = e 0 = 1 ||\phi(\vec{x})||^2=\phi(\vec{x})\cdot\phi(\vec{x})=K(\vec{x},\vec{x})=e^0=1 ∣∣ϕ(x)∣∣2=ϕ(x)⋅ϕ(x)=K(x