SVDD(Support Vector Domain Description) 支持向量数据域描述(2)

这篇文章主要介绍高斯核函数的一些性质和基于高斯核函数的SVDD方法

一、高斯核函数的一些性质

1. 高斯核对饮的映射空间是无限维空间
在上一篇博客中,我们用无穷级数已经说明过这一点,所以这里我们就不再重复了。

2.高斯核函数对应的高维空间中,每一个向量的模长一定是1
这个我们可以用高斯核函数本身的性质来进行求解
∣ ∣ ϕ ( x ⃗ ) ∣ ∣ 2 = ϕ ( x ⃗ ) ⋅ ϕ ( x ⃗ ) = K ( x ⃗ , x ⃗ ) = e 0 = 1 ||\phi(\vec{x})||^2=\phi(\vec{x})\cdot\phi(\vec{x})=K(\vec{x},\vec{x})=e^0=1 ∣∣ϕ(x )2=ϕ(x )ϕ(x )=K(x

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值