解决实例分割中的长尾问题,增益5个点。FASA,cvpr2021

FASA是一种针对长尾实例分割问题的特征增强和采样适应方法,通过特征空间增广来平衡训练数据的分布。在训练过程中,根据特征图的均值和方差进行特征增强,并根据损失动态调整频率以防止过拟合。FASA作为可插入模块,无需修改损失函数,无需预训练,也不需手动定义类别。实验证明,FASA在长尾分类任务中达到最先进的性能。
摘要由CSDN通过智能技术生成

FASA:Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation

论文地址:https://arxiv.org/abs/2102.12867

方法详情,戳here。

所谓长尾问题,指训练集中少数类(头类)占大多数样本,大多数类(尾类)占少量样本。是类别分布不均衡的问题

摘要

为解决长尾问题,我们提出了一种有效的方法,Feature Augmentation and Sampling Adaptation(FASA), 该方法对rare class的特征空间进行增广。FA和FS仅在训练时候用到。根据之前迭代训练过程中特征图,计算特征的均值和方差,根据均值和方法进行FA。为避免过拟合,根据loss来调节特征增广的频率。FASA不需要修改loss,也不需要预训练,也不用手动定义头类和尾类。可作为一个插件模块,在训练的时候使用。将FASA应用在长尾的分类任务中,取得了state-of-the-art-performance的结果。

实验

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值