字符区域检测中常用loss

PAN网络中使用的loss

(5)式中的4个loss函数,第一个是文本区域loss,第二个是核(kernel)区域loss,两个loss都是使用的diceloss;而第三个loss Lagg用于衡量文本实例和其对应kernel的loss,其作用是保证同一文本实例的kernel和文本实例内其他像素之间的距离<\delta_{agg}.第四个loss函数Ldis loss用于是不同文本实例的kernel的loss,其作用是保证任意两个kernel之间的距离>\delta _{dis}

目录

 

1.dice loss

1.Dice系数与Dice Loss

2.Dice系数计算

2.第三个loss

3.第四个loss


1.dice loss

Dice Loss最先在VNet这篇文章中提出,多被广泛用于医学影像分割之中。

1.Dice系数与Dice Loss

Dice系数是一种集合相似度度量函数,通常用于计算亮哥样本的相似度,取值范围在【0,1】:

其中分子绝对值中的部分是X与Y的交集,分母|X|和|Y|分别表示X和Y的元素个数,其中,分子的系数为2是因为分母存在重复计算X和Y之间的共同元素的原因。

Dice loss:

Laplace smoothing:

Laplace smoothing是一个可选改动,即将分子分母全部加1:

Ls=1-(2|X\cap Y|+1)/(|X|+|Y|+1)

使用Laplace smoothing的好处:

(1)避免当|X|和|Y|都为0时,分子被除0的问题

(2)减少过拟合

2.Dice系数计算

首先|X\cap Y|近似为预测图pred和label GT之间的点乘,并将点乘的元素的结果相加:

(1)预测分割图与GT分割图的点乘:

(2)逐元素相乘的结果元素的相加和:

 

PAN网络中的dice loss使用方式:

 

2.第三个loss

其中,N是图像中文本实例的数量,Ti表示第i个文本实例,Ki是文本实例对应的kernel。D(p,ki)定义了文本实例Ti内的像素p和Ki之间的距离,其中,\deltaagg是一个常量,默认是0.5,Fp是网络在像素p处输出的相似度向量,g(Ki)是Ki的相似度向量,计算公式为:

g(.)的计算就是对于Ki里的每一个像素q,网络在像素q处输出的相似度向量除以Ki的像素点数量,|Ki|指Ki的L1范数,这里代表的就是Ki里像素点的数量。

D(p,Ki)里的||F(p)-G(Ki)||表示F(p)-G(Ki)的L2范数,是一个用于衡量像素点到Ki的距离的值,值越小表示相似度越大,公式中距离小于 \deltaagg的像素点就没有必要参与loss计算了,关注哪些距离远的值即可。

3.第四个loss

对于每一个文本实例kernel,分别计算和其他kernel的距离。(4)式中,\deltadis是一个常量,默认3.当两个kernel之间的距离时,就表示这两个kernel的距离已经足够远了。

 

参考内容链接:

[1]https://zhuanlan.zhihu.com/p/86704421

[2]https://zhuanlan.zhihu.com/p/81415166

[3]https://zhuanlan.zhihu.com/p/79111059

[4]https://www.nps.ink/360167.html

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猫猫与橙子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值