图像样本不平衡问题的处理

样本不平衡问题主要集中在两方面:1.样本数量不均衡问题;2.样本分布不均衡的问题。医学图像样本数量不平衡问题可以采用的方法包括:欠采样,过采样,集成学习,生成对抗网络,特征选择和特征提取,代价敏感学习和核函数方法。以下对常用方法一一介绍。

一、针对样本数量不均衡问题,现有方法:

1)欠采样(随机欠采样,Tomek Links等):随机删除多数类别的样本,使得各个类别样本数量相近。缺点:该方法会导致信息丢失,尤其是对于少数类别的样本。

2)过采样(随机过采样、SMOTE等):该方法通过复制少数类别的样本来增加其数量,使得各个类别的样本数量相当。缺点:过采样容易导致过拟合问题,使得模型对训练集过于敏感,而导致在测试数据集上泛化能力较差。

3)集成学习(Bagging和Boosting)。该算法结合了欠采样和过采样方法,生成组多个平衡的子数据集,用这些子数据集训练多个基分类器,然后将它们的预测结果进行投票或平均。

4)生成对抗网络算法,该算法通过成成器和判别器的博弈过程,生成新的样本以增加少数类别的样本数量,且生成的样本与真实样本的分布相似。

二、样本分布不均衡问题

样本分布不均衡问题指各个类别的样本数量相等,但它们在特征空间中的分布不均匀,导致算法对某些类别的判断能力较弱。为了解决这个问题,研究者们提出了一系列特征选择和特征提取的方法。

1)特征选择方法通过选择最具代表性的特征子集,来减少特征空间的维度,提高分类模型的性能。

2)特征提取方法通过从原始特征中提取新的特征,来增加特征空间维度,提高分类模型的性能。

还有一些方法如:基于代价敏感学习的方法,通过为不同类别的样本赋予不同的权重,来调整分类模型对不同类别的关注程度。如:二分类问题中,可以使用加权交叉损失函数;在多分类问题中,可以使用加权多酚类交叉熵损失函数。还有基于核函数的方法,通过将样本隐射到高维特征空间,来使得不同类别的样本更容易被分开。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猫猫与橙子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值