同花顺Supermind量化交易 金融时间序列2--ARCH模型 附源代码

本文探讨了在金融时间序列分析中,如何利用ARCH模型处理波动率的集聚性问题。通过建立均值方程,对沪深300收益进行建模,检验并确认了ARCH效应,进而构建了相应的ARCH模型,最后进行了预测。文章提供了详细的代码实现过程。
摘要由CSDN通过智能技术生成

从金融时间序列的角度,以沪深300的收益作为研究标的,使用ARCH等衍生模型进行探讨和对比,并尝试对价格和波动率进行一定的拟合和预测。

金融时间序列(二)

作者:邱吉尔

1. 输入库包

In [1]:

from scipy import stats
import statsmodels.api as sm
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
plt.style.use('seaborn')
import arch

2. 取出数据

In [2]:

HS300_close=get_price(['000300.SH'], '20151125', '20190125', '1d', ['close'], True, None,is_panel=1)['close']
HS300_close.columns=['HS300_close']
HS300_close['return']=HS300_close['HS300_close'].pct_change()
HS300_close.dropna(inplace=True)
datetime=pd.to_datetime(HS300_close.index)
fig,ax=plt.subplots(figsize=(20,8))
rect1=ax.plot(datetime,HS300_close['return'],color='IndianRed')
ax.set_ylabel('HS300 Return',size=15)
ax=ax.twinx()
rect2=ax.plot(datetime,HS300_close['HS300_close'])
ax.set_ylabel('HS300 Close',size=15)
plt.title('HS300',size=25)

Out[2]:

<matplotlib.text.Text at 0x7fca33a75f60>

3. ARCH 模型

ARCH模型由两个方程组成:


 


其中,{ϵt} 是均值为0,方差为1的独立同分布随机变量序列, α0>0,α1,⋯,αm≥0, σ2t为条件异方差.

在金融时间序列(上)中,我们使用的模型干扰项的方差被假设为恒定。但是现实情况下市场呈现出波动的集聚性,在这种情况下假设方差为恒定是不合适的。ARCH模型将采用某种自回归形式来刻划方差的变异,从上面公式看出,过去较大的平方“扰动”会导致信息at有较大的条件异方差。这意味着:在ARCH的框架下,大的"扰动"会倾向于紧接着出现另一个大的"扰动"。这与波动率聚集的现象相似.

基本思想:

  1. 资产收益率的扰动序列at是前后不相关的, 但是前后不独立.

  2. at的不独立性可以用at平方的滞后值的线性组合表示.

ARCH模型波动率特征:
(1)存在波动率聚集现象.
(2)波动率以连续时间变化,很少发生跳跃.
(3)波动率不会发散到无

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值