对比学习损失(Contrastive Learning Loss)是一种用于自监督学习的损失函数。它侧重于学习一个特征空间,其中相似的样本被拉近,而不相似的样本被推远。在二分类任务中,对比学习损失可以用来学习区分正负样本的特征表示。下面是使用对比学习损失的一种可能方法:
数据准备:首先,为每个样本生成一个对应的正样本(相似的样本)和负样本(不相似的样本)。例如,如果你的数据集是图像分类任务,那么正样本可以是相同类别的不同图像,负样本可以是不同类别的图像。
特征提取器:使用一个神经网络(例如卷积神经网络)作为特征提取器,从原始数据中提取有意义的特征表示。
对比学习损失:对于每个样本,计算其与正样本和负样本之间的距离。通常使用余弦相似性或欧氏距离来度量距离。对比学习损失的目标是最小化正样本之间的距离,同时最大化负样本之间的距离。一个常用的对比学习损失是 InfoNCE 损失:
L = − 1 N ∑ i = 1 N log exp ( sim ( z i , z i + ) ) / τ ) exp ( sim ( z i , z i + ) ) / τ + ∑ j = 1 K exp ( sim ( z i , z i − j ) ) / τ ) L = -\frac{1}{N}\sum_{i=1}^N \log \frac{\exp(\operatorname{sim}(z_i, z_{i+})) / \tau)}{\exp(\operatorname{sim}(z_i, z_{i+})) /