对比学习损失 InfoNCE

对比学习损失是一种用于自监督学习的损失函数,它通过拉近相似样本和推远不相似样本来学习特征表示。在二分类任务中,这种方法利用正负样本学习区分特征。数据准备涉及生成正负样本,特征提取通常用神经网络实现,如CNN。InfoNCE损失是常用的对比学习损失函数,用于最小化正样本间距离并最大化负样本间距离。训练过程使用优化算法更新特征提取器,最后可添加分类层进行二分类任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对比学习损失(Contrastive Learning Loss)是一种用于自监督学习的损失函数。它侧重于学习一个特征空间,其中相似的样本被拉近,而不相似的样本被推远。在二分类任务中,对比学习损失可以用来学习区分正负样本的特征表示。下面是使用对比学习损失的一种可能方法:

数据准备:首先,为每个样本生成一个对应的正样本(相似的样本)和负样本(不相似的样本)。例如,如果你的数据集是图像分类任务,那么正样本可以是相同类别的不同图像,负样本可以是不同类别的图像。

特征提取器:使用一个神经网络(例如卷积神经网络)作为特征提取器,从原始数据中提取有意义的特征表示。

对比学习损失:对于每个样本,计算其与正样本和负样本之间的距离。通常使用余弦相似性或欧氏距离来度量距离。对比学习损失的目标是最小化正样本之间的距离,同时最大化负样本之间的距离。一个常用的对比学习损失是 InfoNCE 损失:

L = − 1 N ∑ i = 1 N log ⁡ exp ⁡ ( sim ⁡ ( z i , z i + ) ) / τ ) exp ⁡ ( sim ⁡ ( z i , z i + ) ) / τ + ∑ j = 1 K exp ⁡ ( sim ⁡ ( z i , z i − j ) ) / τ ) L = -\frac{1}{N}\sum_{i=1}^N \log \frac{\exp(\operatorname{sim}(z_i, z_{i+})) / \tau)}{\exp(\operatorname{sim}(z_i, z_{i+})) /

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UCAS_V

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值