两种对比学习损失:contrastive loss 和 infoNCE loss

对比损失(contrastive loss)和信息最大化非条件估计损失(infoNCE loss)是两种常用于对比学习的损失函数。

不同点:

  1. 对比损失是通过将同类样本靠近、异类样本远离的方式进行训练,而infoNCE损失则是通过最大化正样本的概率和最小化负样本的概率来进行训练。
  2. 对比损失通常使用欧氏距离或余弦距离作为相似性度量,而infoNCE损失则使用信息论中的互信息来度量样本之间的相关性。
  3. 在实践中,对比损失常用于Siamese网络等结构中,而infoNCE损失则常用于自编码器等结构中。

相同点:

  1. 目标都是通过对比样本的相似性来学习特征表示。
  2. 都属于无监督学习方法,不需要标签信息。
  3. 都通过最大化特征之间的相似性或最小化特征之间的差异性来进行训练。

总的来说,对比损失和infoNCE损失都是有效的对比学习方法,可以用于无监督学习任务。选择使用哪种损失函数取决于具体的任务和模型结构,以及对样本相似性度量的需求。

在这里插入图片描述
在这里插入图片描述

### InfoNCE Loss 的定义 InfoNCE (Information Noise Contrastive Estimation) 是一种用于对比学习损失函数,在自监督学习领域广泛应用。该损失函数旨在最大化正样本对之间的互信息,同时最小化负样本间的相似度。具体来说,给定一个锚点样本 \( z_i \),以及对应的正样本 \( z_j \) 一组负样本 \( {z_k} \),InfoNCE 损失可以表达为: \[ L_{\text{InfoNCE}} = -\log \frac{\exp(\operatorname{sim}(z_i, z_j)/\tau)}{\sum_{k=1}^{K}\exp(\operatorname{sim}(z_i, z_k)/\tau)} \] 其中 \( \operatorname{sim}(.,.) \) 表示余弦相似度或其他形式的距离度量,\( \tau \) 称作温度参数[^1]。 ### InfoNCE Loss 的用途 InfoNCE 损失主要用于提升模型区分正样本负样本的能力。通过优化这一损失函数,编码器能够学到更加鲁棒且具有判别性的特征表示。这些高质量的表征可以直接应用于各种下游任务,如分类、检索等,而无需额外标注大量数据。此外,由于 InfoNCE 不依赖于特定的任务设定,因此适用于多种模态的数据处理场景,比如图像、文本甚至音频等领域。 ### InfoNCE Loss 的实现方法 以下是 Python 中使用 PyTorch 实现 InfoNCE 损失的一个简单例子: ```python import torch from torch import nn import torch.nn.functional as F class InfoNCELoss(nn.Module): def __init__(self, temperature=0.5): super().__init__() self.temperature = temperature def forward(self, anchor_embeddings, positive_embeddings, negative_embeddings=None): """ :param anchor_embeddings: 锚点样本嵌入 Tensor of shape (batch_size, embedding_dim) :param positive_embeddings: 正样本嵌入 Tensor of shape (batch_size, embedding_dim) :param negative_embeddings: 负样本嵌入 Tensor of shape (num_negatives, batch_size, embedding_dim), optional """ # 计算相似度矩阵 sim_matrix = torch.exp(F.cosine_similarity(anchor_embeddings.unsqueeze(1), positive_embeddings.unsqueeze(0)) / self.temperature) if negative_embeddings is not None: neg_similarities = torch.sum(torch.exp( F.cosine_similarity(anchor_embeddings.unsqueeze(1).unsqueeze(2), negative_embeddings.permute(1, 0, 2)) .reshape(len(anchor_embeddings), -1) / self.temperature), dim=-1) sim_matrix += neg_similarities # 计算并返回平均 NLL 损失 nll_loss = -torch.log(sim_matrix.diag() / sim_matrix.sum(dim=-1)).mean() return nll_loss ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值