点到直线平面距离

本文介绍了计算几何中的三个基本问题:点到直线的距离、点到平面的距离以及空间中点到直线的距离。提供了相应的数学公式,并通过点积公式解释了如何找到空间点在直线上的投影并计算距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1平面点到直线距离
(x0,y0),直线:A*x + B*y + c = 0,距离d。

d=|A*x0 + B*y0 + c|/ sqrt(A*A + B*B)

 

2空间点到平面距离

点(x0,y0,z0),平面:A*x + B*y + C*z + D = 0,距离d。

d=|A*x0 + B*y0 + C*z0 + D|/sqrt(A*A + B*B + C*C)

 

3空间点到直线距离

一个点A在直线m上的射影是一个点B
AB垂直于m<

### 计算二维平面点到直线的最短距离 在二维平面上,给定点 \( P(x_1, y_1) \),以及一条由两点 \( A(x_A, y_A) \) \( B(x_B, y_B) \) 定义的直线,可以通过以下方法计算点到直线的最短距离。 #### 使用向量法求解 为了找到点 \( P \) 到直线 \( AB \) 的最短距离,可以利用向量投影的方法。具体来说: - 首先构建两个向量:\( \vec{AP} = (x_P - x_A, y_P - y_A) \) 表示从点A指向P的方向;\[ \vec{AB} = (x_B - x_A, y_B - y_A) \]表示线段方向[^1]。 - 接着计算这两个向量之间的夹角余弦值 cosθ 及其对应的正弦值 sinθ,其中 θ 是 AP 与 AB 方向之间形成的较小角度。这里可以直接应用内积公式得到cosθ而不需要显式地求出θ本身: \[ \text{cos}\theta=\frac{\vec{AP}\cdot\vec{AB}}{|\vec{AP}| |\vec{AB}|} \] - 而sinθ可通过勾股定理得出:\(\sqrt{(1-\text{cos}^2\theta)}\) - 点到直线距离 d 就等于 |AP| * sinθ 或者也可以写作: \[ d=|\vec{AP}|\times\sqrt{1-(\frac{\vec{AP}\cdot\vec{AB}}{|\vec{AP}||\vec{AB}|})^2}=|\vec{AP}-proj_{\vec{AB}}\vec{AP}| \] 此处 proj 表达的是沿某个特定方向上的分量即投影长度。 另一种更为简洁的方式是直接使用行列式的性质来表达上述过程的结果: 对于任意不在同一直线上三点组成的三角形面积S可写成如下形式的一半绝对值: \[ S=\left|\begin{matrix}x_A&y_A&1\\x_B&y_B&1\\x_P&y_P&1\\\end{matrix}\right|/2 \] 因此所求距离也就是此三角形高h=S*2/base_length(base_length指底边长即AB间距离) 最后给出Python实现代码片段用于实际操作验证理论结果准确性。 ```python import numpy as np def point_to_line_distance(P, A, B): """ Calculate the shortest distance from a point to a line defined by two points. Parameters: P : tuple of float Coordinates of the point (Px, Py). A : tuple of float One end-point coordinates of the line segment (Ax, Ay). B : tuple of float Another end-point coordinates of the line segment (Bx, By). Returns: float The minimum Euclidean distance between the given point and the line. """ # Convert tuples into NumPy arrays for easier manipulation p = np.array([P]) a = np.array([A]) b = np.array([B]) # Compute vectors PA and BA pa = p - a ba = b - a # Use cross product formula derived above area_triangle = abs(np.cross(pa.flatten(), ba.flatten())) length_ab = np.linalg.norm(ba) return area_triangle / length_ab # Example usage if __name__ == "__main__": example_point = (-1., 3.) start_of_line_segment = (0., 0.) end_of_line_segment = (4., 2.) dist = point_to_line_distance(example_point, start_of_line_segment, end_of_line_segment) print(f"The perpendicular distance is {dist:.6f}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值