Scaling Law:人工智能领域的基石与展望
目录
一、引言
在人工智能蓬勃发展的浪潮中,Scaling Law(大模型缩放定律)宛如一座闪耀的灯塔,为模型的发展与应用照亮前行的道路。它不仅是洞悉模型性能与规模关系的关键理论,更是推动人工智能在自然语言处理、机器人、图像识别等众多领域实现突破的核心驱动力,对现代科技的进步产生了不可估量的深远影响。从语音助手到自动驾驶,从智能医疗到金融风控,Scaling Law 的身影无处不在,它正悄然改变着我们的生活和工作方式。
二、Scaling Law 的起源与发展
Scaling Law 的发展历程中,百度和 OpenAI 的研究成果具有开创性意义。2017 年百度硅谷人工智能实验室率先对深度学习模型性能与规模关系展开系统性探索,随后 2020 年 OpenAI 基于 Transformer 结构语言模型,进一步深化和完善了 Scaling Law 理论,明确了模型参数数量 N N N(不包括嵌入)、数据集大小 D D D 和计算量 C C C 等关键因素对模型性能的影响规律。
2.1 百度的开创性研究
2017 年百度发表论文《DEEP LEARNING SCALING IS PREDICTABLE, EMPIRICALLY》,针对机器翻译、语言建模、图像处理和语音识别领域开展大规模实证研究。
-
实验过程
-
数据准备:选取一个大型数据集 T T T,将其缩减至原大小的 2 - 3 个数量级后仍能支撑模型架构研究。把 T T T随机打乱,保证数据分布一致,再划分为不同大小的子集 T i T_i Ti,子集大小以约 2 倍的指数递增。同时定义一个不与任何训练集子集重叠的验证集 V V V,用于评估模型性能。
-
模型设置:设置模型 M M M,移除可能降低模型有效容量的正则化方案,检查验证曲线,找出每个数据集子集 T i T_i Ti过拟合的最小模型大小。
-
模型候选生成:约束 M M M模型容量、减少 M M M的超参数,生成一组模型候选 M 0 M_0 M0,并执行随机蒙特卡洛网格搜索,找到最合适的 M 0 M_0 M0。
-
模型训练与优化:利用随机搜索,为 T T T的最小和最大子集找到最佳拟合模型,预测性地增加模型大小,定义更大的 T i + 1 T_{i + 1} Ti+1子集的候选模型集,然后在 T i + 1 T_{i + 1} Ti+1上找到最佳拟合的超参数模型。
-
-
使用的数据
- 机器翻译:多种语言对数据。
- 语言建模:大规模文本语料库。
- 图像处理:图像数据集。
- 语音识别:音频数据集。
-
公式
- 泛化误差
E
E
E和所需模型大小
S
S
S与训练数据大小
D
D
D的关系可表示为
E
∝
D
−
β
E \propto D^{-\beta}
E∝D−β
S
∝
D
γ
S \propto D^{\gamma}
S∝Dγ
- E E E代表泛化误差,即模型在新数据上的误差,它反映了模型的泛化能力,也就是模型对未知数据的适应程度。
- S S S表示所需模型大小,可理解为模型的规模,比如模型参数的数量等; D D D是训练数据大小,即用于训练模型的数据量。 β \beta β和 γ \gamma γ为幂律指数,它们是常数,不同领域取值不同,但在单一领域内保持稳定。
- E ∝ D − β E \propto D^{-\beta} E∝D−β表明,随着训练数据大小 D D D的增加,泛化误差 E E E会以幂函数的形式下降,即数据量越多,模型在新数据上的误差越小;
- S ∝ D γ S \propto D^{\gamma} S∝Dγ表示所需模型大小 S S S会随着训练数据大小 D D D的增加而以幂函数的形式增长,意味着数据量增大时,为了达到较好的性能,所需的模型规模也会相应增大 。
- 泛化误差
E
E
E和所需模型大小
S
S
S与训练数据大小
D
D
D的关系可表示为
E
∝
D
−
β
E \propto D^{-\beta}
E∝D−β
S
∝
D
γ
S \propto D^{\gamma}
S∝Dγ
-
结论
-
随着训练数据大小增加,泛化误差和所需模型大小在四个测试领域均呈现幂律缩放规律。
-
不同应用产生不同的幂律指数和截距,但单一领域的模型呈现的幂律指数相同,改进模型仅改变幂律截距,不影响幂律指数。
-
模型从以最佳猜测为主的小训练集区域转变为以幂律缩放为主的区域,当训练集足够大时,模型将在以不可约误差(如贝叶斯误差)为主的区域内饱和。
-
2.2 OpenAI 的深化拓展
OpenAI 在 2020 年发表的《Scaling Laws for Neural Language Models》中,基于 Transformer 结构的语言模型,以交叉熵损失为评价指标,深入研究了 Scaling Law。
-
实验过程
-
模型搭建:基于 Transformer 架构搭建语言模型。
-
数据准备:准备不同规模的数据集用于训练。
-
变量控制与训练:控制计算资源,在不同的模型参数数量 N N N、数据集大小 D D D和计算量 C C C组合下进行训练。每次只改变一个因素( N N N、 D D D或 C C C),观察模型在训练集和验证集上的损失变化,以及在测试集上的泛化性能表现。
-
-
使用的数据
- 采用大规模的文本数据集,包含新闻、小说、学术论文等多种来源和领域的文本。
-
公式
- 模型损失
L
L
L与模型参数数量
N
N
N、数据集大小
D
D
D和计算量
C
C
C之间存在幂律关系,如
L
∝
N
−
α
L \propto N^{-\alpha}
L∝N−α
L
∝
D
−
δ
L \propto D^{-\delta}
L∝D−δ
L
∝
C
−
ϵ
L \propto C^{-\epsilon}
L∝C−ϵ
这里, L L L是模型损失,它衡量了模型预测值与真实值之间的差异,损失越小,说明模型的预测效果越好; N N N代表模型参数数量,即模型中可学习参数的总数,参数数量越多,模型的表达能力通常越强; D D D为数据集大小,即训练数据的规模; C C C表示计算量,是训练模型过程中所消耗的计算资源总量。 α \alpha α、 δ \delta δ、 ϵ \epsilon ϵ为幂律指数,是与模型性能相关的常数。 - L ∝ N − α L \propto N^{-\alpha} L∝N−α意味着模型损失 L L L会随着模型参数数量 N N N的增加而以幂函数的形式减小,即模型参数增多,模型损失降低,性能提升;
- L ∝ D − δ L \propto D^{-\delta} L∝D−δ表明随着数据集大小 D D D的增大,模型损失 L L L会以幂函数形式下降,说明数据量越大,模型的预测效果越好;
- L ∝ C − ϵ L \propto C^{-\epsilon} L∝C−ϵ表示计算量 C C C增加时,模型损失 L L L会以幂函数形式减小,反映出更多的计算资源有助于提升模型性能 。
- 性能惩罚与比率: N 0.74 / D N^{0.74}/D N0.74/D相关,即当固定数据集大小 D D D而增加模型参数数量 N N N时,或者固定模型参数数量 N N N而增加数据集大小 D D D时,性能惩罚可通过 N 0.74 / D N^{0.74}/D N0.74/D这个比率来预测。例如,当模型大小增加 8 倍时,根据这个比率关系,数据增加约 5 倍可避免性能惩罚。
- 数据需求与计算量关系为: D ∼ C 0.27 D ∼ C^{0.27} D∼C0.27,表示数据需求 D D D随着计算量 C C C的增加而以幂函数形式缓慢增长,即计算量增加时,所需的数据量也会相应增加,但增长速度相对较慢 。
- 模型损失
L
L
L与模型参数数量
N
N
N、数据集大小
D
D
D和计算量
C
C
C之间存在幂律关系,如
L
∝
N
−
α
L \propto N^{-\alpha}
L∝N−α
L
∝
D
−
δ
L \propto D^{-\delta}
L∝D−δ
L
∝
C
−
ϵ
L \propto C^{-\epsilon}
L∝C−ϵ
-
结论
-
模型性能主要取决于模型参数数量 N N N、数据集大小 D D D和计算量 C C C这三个因素的规模。在合理范围内,其他架构超参数如深度与宽度对性能影响微弱。
-
模型性能与 N N N、 D D D、 C C C分别呈现平滑的幂律关系,当另外两个因素不受限时,这种趋势跨度超过六个数量级,且在高端规模下无明显偏离迹象,不过性能最终会趋于平稳。
-
同时扩大 N N N和 D D D,性能会可预测地提高;但固定其中一个而增加另一个因素,则会进入收益递减阶段。
-
训练曲线遵循可预测的幂律,通过外推训练曲线的早期部分,可大致预测训练更长时间会达到的损失。
-
当使用与训练数据不同分布的文本评估模型时,结果与训练验证集上的表现高度相关,损失有大致恒定的偏移量,即迁移有固定惩罚,但性能改进与训练集上的改进保持高度一致。
-
大型模型比小型模型更具样本效率,能通过更少的优化步骤和更少的数据点达到相同性能水平。
-
在固定计算预算 C C C内,最佳性能是通过训练非常大的模型,并在远未收敛时停止训练来实现,最大计算效率的训练比基于训练小模型收敛的预期样本效率高得多。
-
三、Scaling Law 在各领域的应用
3.1 自然语言处理(NLP)领域
在 NLP 领域,Scaling Law 的应用极为广泛。以 Transformer 架构的语言模型为例,随着模型参数的不断增加,其在语言理解和生成任务中的表现得到了显著提升。GPT 系列模型便是这一应用的杰出例证,GPT-3 拥有 1750 亿个参数,展现出了令人惊叹的强大语言处理能力,能够轻松完成文本生成、问答、翻译等多种复杂任务。在实际应用中,内容创作者可以利用 GPT-3 快速生成高质量的文案,大大提高创作效率;智能客服系统借助 GPT-3 能够更准确地理解用户问题并提供恰当的回答,提升用户体验。通过遵循 Scaling Law,研究人员可以根据具体的任务需求和资源状况,合理规划模型规模和数据集大小,从而显著提高模型的性能和效率,为 NLP 领域的发展注入强大动力。
3.2 机器人领域
在机器人领域,Scaling Law 同样发挥着举足轻重的作用。它的核心表现在于,随着机器人学习数据的不断增加以及模型规模的逐步扩大,机器人在复杂任务中的表现得到了显著提升。例如,在工业制造领域,机器人通过大量的训练数据和大规模的模型,能够更好地适应不同的生产环境和任务要求,实现更精准的动作控制和决策,从而提高生产效率和产品质量。在物流配送领域,智能机器人可以根据海量的物流数据和先进的模型算法,优化配送路线,提高配送效率,降低物流成本。在实际应用中,利用 Scaling Law 优化机器人学习策略,可使机器人在工业制造、物流配送、家庭服务等众多领域发挥更大的作用,推动机器人技术的广泛应用和发展。
四、Scaling Law 面临的挑战
4.1 数据与计算资源瓶颈
随着模型规模和数据量的不断增大,对数据存储和计算能力的要求也达到了前所未有的高度。训练大规模模型需要消耗海量的计算资源,这不仅大幅增加了训练成本,还面临着硬件设备性能的严重限制。目前,即使是最先进的 GPU 集群,在处理超大规模模型时也会显得力不从心。获取高质量、大规模的数据集也并非易事,数据的标注和预处理工作需要耗费大量的人力和时间。例如,在图像识别领域,为了训练一个高精度的模型,需要收集数百万张图像并进行精细标注,这一过程不仅繁琐,而且容易出现标注误差。
4.2 模型性能的边际效应
虽然 Scaling Law 表明模型性能会随着规模的增加而提升,但当模型达到一定规模后,性能提升的边际效应逐渐减弱。继续增加模型参数和数据量,所带来的性能提升可能并不显著,甚至可能出现过拟合等问题。这就需要研究人员寻找新的方法和技术来突破这一限制,如开发更高效的模型架构、优化训练算法、采用更先进的数据增强技术等。